Suppr超能文献

蠕虫免疫调节对COVID-19临床结局的影响:有益还是有害?

The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental?

作者信息

Ademe Muluneh, Girma Friehiwot

机构信息

Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

Department of Pediatrics and Child Health Nursing, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.

出版信息

Infect Drug Resist. 2021 Oct 27;14:4421-4426. doi: 10.2147/IDR.S335447. eCollection 2021.

Abstract

Immunologically, chronic worm infections prevent themselves from strong immune responses by skewing the host response towards a T helper 2 (Th2) type. The regulatory response initiated by helminth infections is supposed to temper responses to non-helminth antigens including viral infections which will, in turn, alter the clinical outcomes of infections. In view of this, recent reports highlighted the possible negative associations of severe COVID-19 and helminth co-infections in helminth-endemic regions. As the pathology of COVID-19 is primarily mediated by an excessive immune response and subsequent cytokine storm, which contributes to the poor prognosis of COVID-19, helminth-driven immune modulation will hypothetically contribute to the less severe outcomes of COVID-19. Nevertheless, emerging reports also stated that COVID-19 and helminth co-infections may have more hidden outcomes than predictable ones. Herein, the current knowledge on the interaction of COVID-19 and helminth co-infections will be discussed.

摘要

在免疫学上,慢性蠕虫感染通过使宿主反应偏向2型辅助性T细胞(Th2)类型来避免自身引发强烈的免疫反应。由蠕虫感染引发的调节性反应被认为会缓和对包括病毒感染在内的非蠕虫抗原的反应,而这反过来又会改变感染的临床结果。有鉴于此,最近的报告强调了在蠕虫流行地区严重COVID-19与蠕虫合并感染之间可能存在的负相关关系。由于COVID-19的病理主要由过度的免疫反应和随后的细胞因子风暴介导,这导致了COVID-19的预后不良,因此蠕虫驱动的免疫调节理论上会使COVID-19的结果不那么严重。然而,新出现的报告也指出,COVID-19与蠕虫合并感染可能产生比可预测结果更多的潜在结果。在此,将讨论目前关于COVID-19与蠕虫合并感染相互作用的知识。

相似文献

1
The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental?
Infect Drug Resist. 2021 Oct 27;14:4421-4426. doi: 10.2147/IDR.S335447. eCollection 2021.
2
Chronic helminth infections induce immunomodulation: consequences and mechanisms.
Immunobiology. 2007;212(6):475-90. doi: 10.1016/j.imbio.2007.03.009. Epub 2007 Apr 20.
3
The «moonlighting protein» able to explain the T1 immune lockdown in severe COVID-19.
Med Hypotheses. 2020 Oct;143:110087. doi: 10.1016/j.mehy.2020.110087. Epub 2020 Jul 9.
4
Molecular events by which dendritic cells promote Th2 immune protection in helmith infection.
Infect Dis (Lond). 2016 Oct;48(10):715-20. doi: 10.1080/23744235.2016.1194529. Epub 2016 Jun 27.
5
Toxoplasma Co-infection Prevents Th2 Differentiation and Leads to a Helminth-Specific Th1 Response.
Front Cell Infect Microbiol. 2017 Jul 25;7:341. doi: 10.3389/fcimb.2017.00341. eCollection 2017.
7
Mapping immune response profiles: the emerging scenario from helminth immunology.
Eur J Immunol. 2007 Dec;37(12):3319-26. doi: 10.1002/eji.200737765.
9
Regulatory T cells limit induction of protective immunity and promote immune pathology following intestinal helminth infection.
J Immunol. 2014 Mar 15;192(6):2904-12. doi: 10.4049/jimmunol.1202502. Epub 2014 Feb 14.
10
Role of neglected parasitic diseases in the era of COVID-19 pandemics.
Ann Parasitol. 2022;68(4):667-672. doi: 10.17420/ap6804.473.

引用本文的文献

2
Soil-transmitted helminths: A critical review of the impact of co-infections and implications for control and elimination.
PLoS Negl Trop Dis. 2023 Aug 10;17(8):e0011496. doi: 10.1371/journal.pntd.0011496. eCollection 2023 Aug.
3
The Potential Nexus between Helminths and SARS-CoV-2 Infection: A Literature Review.
J Immunol Res. 2023 Jun 20;2023:5544819. doi: 10.1155/2023/5544819. eCollection 2023.
4
Strongyloides and COVID-19: Challenges and Opportunities for Future Research.
Trop Med Infect Dis. 2023 Feb 19;8(2):127. doi: 10.3390/tropicalmed8020127.
8
The Fight Against Severe COVID-19: Can Parasitic Worms Contribute?
Front Immunol. 2022 Feb 11;13:849465. doi: 10.3389/fimmu.2022.849465. eCollection 2022.

本文引用的文献

1
Chronic Diseases as a Predictor for Severity and Mortality of COVID-19: A Systematic Review With Cumulative Meta-Analysis.
Front Med (Lausanne). 2021 Sep 1;8:588013. doi: 10.3389/fmed.2021.588013. eCollection 2021.
2
Emerging issues in COVID-19 vaccination in tropical areas: Impact of the immune response against helminths in endemic areas.
Travel Med Infect Dis. 2021 Jul-Aug;42:102087. doi: 10.1016/j.tmaid.2021.102087. Epub 2021 May 27.
3
COVID-19 and helminth infection: Beyond the Th1/Th2 paradigm.
PLoS Negl Trop Dis. 2021 May 24;15(5):e0009402. doi: 10.1371/journal.pntd.0009402. eCollection 2021 May.
4
2021 Acute Respiratory Distress Syndrome Update, With Coronavirus Disease 2019 Focus.
J Cardiothorac Vasc Anesth. 2022 Apr;36(4):1188-1195. doi: 10.1053/j.jvca.2021.02.053. Epub 2021 Feb 27.
5
Consequences of the COVID-19 pandemic for patients with metabolic diseases.
Nat Metab. 2021 Mar;3(3):289-292. doi: 10.1038/s42255-021-00358-y.
7
Metabolic Syndrome and COVID-19.
Cardiol Res. 2020 Dec;11(6):360-365. doi: 10.14740/cr1181. Epub 2020 Nov 2.
8
SARS-CoV-2 in the Amazon region: A harbinger of doom for Amerindians.
PLoS Negl Trop Dis. 2020 Oct 29;14(10):e0008686. doi: 10.1371/journal.pntd.0008686. eCollection 2020 Oct.
9
Helminths and COVID-19 Co-Infections: A Neglected Critical Challenge.
ACS Pharmacol Transl Sci. 2020 Sep 30;3(5):1039-1041. doi: 10.1021/acsptsci.0c00141. eCollection 2020 Oct 9.
10
COVID-19 and Renal Diseases: An Update.
Curr Drug Targets. 2021;22(1):52-67. doi: 10.2174/1389450121999201013151300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验