Suppr超能文献

氧空位诱导的非自由基有机物降解:Fe-Co LDH/过一硫酸盐体系中氧(O)的关键触发因素。

Oxygen Vacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O) in the Fe-Co LDH/Peroxymonosulfate System.

机构信息

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.

出版信息

Environ Sci Technol. 2021 Nov 16;55(22):15400-15411. doi: 10.1021/acs.est.1c04600. Epub 2021 Nov 5.

Abstract

Ubiquitous oxygen vacancies (Vo) existing in metallic compounds can activate peroxymonosulfate (PMS) for water treatment. However, under environmental conditions, especially oxygenated surroundings, the interactions between Vo and PMS as well as the organics degradation mechanism are still ambiguous. In this study, we provide a novel insight into the PMS activation mechanism over Vo-containing Fe-Co layered double hydroxide (LDH). Experimental results show that Vo/PMS is capable of selective degradation of organics via a single-electron-transfer nonradical pathway. Moreover, O is firstly demonstrated as the most critical trigger in this system. Mechanistic studies reveal that, with abundant electrons confined in the vacant electron orbitals of Vo, O is thermodynamically enabled to capture electrons from Vo to form O under the imprinting effect and start the activation process. Simultaneously, Vo becomes electron-deficient and withdraws the electrons from organics to sustain the electrostatic balance and achieve organics degradation (32% for Bisphenol A without PMS). Different from conventional PMS activation, under the collaboration of kinetics and thermodynamics, PMS is endowed with the ability to donate electrons to Vo as a reductant other than an oxidant to form O. In this case, O and O act as the indispensable intermediate species to accelerate the circulation of O (as high as 14.3 mg/L) in the micro area around Vo, and promote this nano-confinement electron-recycling process with 67% improvement of Bisphenol A degradation. This study provides a brand-new perspective for the nonradical mechanism of PMS activation over Vo-containing metallic compounds in natural environments.

摘要

氧空位(Vo)普遍存在于金属化合物中,可以激活过一硫酸盐(PMS)用于水处理。然而,在环境条件下,特别是含氧环境中,Vo 与 PMS 之间的相互作用以及有机物降解机制仍不清楚。在这项研究中,我们提供了一种关于含 Vo 的 Fe-Co 层状双氢氧化物(LDH)中 PMS 激活机制的新见解。实验结果表明,Vo/PMS 能够通过单电子转移非自由基途径选择性地降解有机物。此外,本研究首次证明 O 是该体系中最关键的触发因素。机理研究表明,由于 Vo 中大量电子被限制在空的电子轨道中,在印记效应下,O 能够从 Vo 中捕获电子形成 O,并开始激活过程。同时,Vo 变得电子不足,并从有机物中提取电子以维持静电平衡并实现有机物降解(没有 PMS 时双酚 A 降解 32%)。与传统的 PMS 激活不同,在动力学和热力学的协同作用下,PMS 被赋予了作为还原剂而不是氧化剂向 Vo 提供电子的能力,以形成 O。在这种情况下,O 和 O 作为必不可少的中间物种,加速 Vo 周围微区中 O 的循环(高达 14.3mg/L),并促进这种纳米限域电子循环过程,使双酚 A 降解率提高 67%。本研究为含 Vo 的金属化合物在自然环境中通过非自由基机制激活 PMS 提供了全新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验