Zhang Xiai, Xu Zhongshuang, Zhang Xinwei, Wang Jingquan, Liu Dan, Miao Huanran, Wang Tong, Yang Zhimao, Fan Qikui, Kong Chuncai
MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory for Advanced Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
Nanomicro Lett. 2025 Jun 23;17(1):304. doi: 10.1007/s40820-025-01820-2.
Developing innovative resource utilization strategies to achieve sustainable recycling of waste-to-fuel is highly desirable, yet the design of cost-effective bifunctional catalysts with dual high-efficiency remains unexplored. While the Fenton-like reaction relies on enhancing peroxymonosulfate (PMS) adsorption and accelerating interfacial electron transfer to improve kinetic rates, CO reduction is constrained by sluggish kinetics and competing hydrogen evolution reaction. Herein, we construct a bifunctional catalyst (NiFe-BNC) featuring dual-atomic active sites by introducing boron atoms into a biomass-derived chitosan substrate rich in functional groups, which optimizes atomic coordination environments. In situ experiments and density functional theory calculations reveal that B-atom modulation facilitates carbon substrate defect enrichment, while the charge-tuning effect between metal sites and "boron electron bridge" optimizes PMS adsorption configurations. This synergistic effect facilitates the interfacial electron transfer and enhances the CO adsorption capacity of NiFe-BNC by 6 times that of NiFe-NC. The obtained NiFe-BNC exhibits significantly enhanced catalytic activity and selectivity, realizing 99% efficient degradation of volatile organic pollutants in the flowing phase within 2 h and stable mineralization exceeding 60%, while achieving a large current density of 1000 mA cm and CO Faraday efficiency of 98% in the flow electrolytic cell. This work innovatively paves a new way for the rational design of cost-effective functional catalysts to achieve carbon cycle utilization.
开发创新的资源利用策略以实现废物到燃料的可持续循环利用是非常可取的,但具有双重高效性的经济高效双功能催化剂的设计仍未得到探索。虽然类芬顿反应依赖于增强过一硫酸盐(PMS)吸附和加速界面电子转移来提高动力学速率,但CO还原受到缓慢动力学和竞争性析氢反应的限制。在此,我们通过将硼原子引入富含官能团的生物质衍生壳聚糖底物中构建了一种具有双原子活性位点的双功能催化剂(NiFe-BNC),从而优化了原子配位环境。原位实验和密度泛函理论计算表明,B原子调制促进了碳底物缺陷富集,而金属位点与“硼电子桥”之间的电荷调节效应优化了PMS吸附构型。这种协同效应促进了界面电子转移,并使NiFe-BNC的CO吸附能力提高到NiFe-NC的6倍。所制备的NiFe-BNC表现出显著增强的催化活性和选择性,在2小时内实现了流动相中挥发性有机污染物99%的高效降解和超过60%的稳定矿化,同时在流动电解池中实现了1000 mA cm的大电流密度和98%的CO法拉第效率。这项工作创新性地为合理设计经济高效的功能催化剂以实现碳循环利用开辟了一条新途径。