Kim Junseok, Cui Jianming, Fichthorn Kristen A
ACS Nano. 2021 Nov 23;15(11):18279-18288. doi: 10.1021/acsnano.1c07425. Epub 2021 Nov 5.
Penta-twinned metal nanowires are finding widespread application in existing and emerging technologies. However, little is known about their growth mechanisms. We probe the origins of chloride- and alkylamine-mediated, solution-phase growth of penta-twinned Cu nanowires from first-principles using multiscale theory. Using quantum density functional theory (DFT) calculations, we characterize the binding and surface diffusion of Cu atoms on chlorine-covered Cu(100) and Cu(111) surfaces. We find stronger binding and slower diffusion of Cu atoms on chlorinated Cu(111) than on chlorinated Cu(100), which is a reversal of the trend for bare Cu surfaces. We also probe interfacet diffusion and find that this proceeds faster from Cu(100) to Cu(111) than the reverse. Using the DFT rates for hopping between individual sites at Ångstrom scales, we calculate coarse-grained, interfacet rates for nanowires of various lengths─up to hundreds of micrometers─and diameters in the 10 nm range. We predict nanowires with aspect ratios of ∼100, based on surface diffusion alone. We also account for the influence of a self-assembled alkylamine layer that covers most of the {100} facets, but is absent or thin and disordered on the {111} facets and in an "end zone" near the {100}/{111} boundary. With an end zone, we predict a wide range of nanowire aspect ratios in the experimental ranges. Our work reveals the mechanisms by which a halide─chloride─promotes the growth of high-aspect-ratio nanowires.
五重孪晶金属纳米线在现有和新兴技术中有着广泛的应用。然而,人们对其生长机制知之甚少。我们运用多尺度理论,从第一性原理出发,探究氯离子和烷基胺介导的五重孪晶铜纳米线的溶液相生长起源。通过量子密度泛函理论(DFT)计算,我们表征了铜原子在氯覆盖的Cu(100)和Cu(111)表面上的吸附和表面扩散。我们发现,与氯化Cu(100)相比,铜原子在氯化Cu(111)上的吸附更强,扩散更慢,这与裸铜表面的趋势相反。我们还探究了界面扩散,发现从Cu(100)到Cu(111)的扩散比反向扩散更快。利用DFT计算出的埃尺度下单个位点间跳跃的速率,我们计算了各种长度(长达数百微米)和直径在10纳米范围内的纳米线的粗粒度界面速率。仅基于表面扩散,我们预测了长径比约为100的纳米线。我们还考虑了自组装烷基胺层的影响,该层覆盖了大部分{100}面,但在{111}面以及靠近{100}/{111}边界的“端部区域”中不存在或很薄且无序。考虑到端部区域,我们预测了实验范围内的各种纳米线长径比。我们的工作揭示了卤化物(氯离子)促进高长径比纳米线生长的机制。