Lee Jongmin, Kim Gi-Yeop, Jeong Seyeop, Yang Mihyun, Kim Jong-Woo, Cho Byeong-Gwan, Choi Yongseong, Kim Sangmo, Choi Jin San, Lee Tae Kwon, Kim Jiwoong, Lee Dong Ryeol, Chang Seo Hyoung, Park Sungkyun, Jung Jong Hoon, Bark Chung Wung, Koo Tae-Young, Ryan Philip J, Ihm Kyuwook, Kim Sanghoon, Choi Si-Young, Kim Tae Heon, Lee Sanghan
School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
ACS Appl Mater Interfaces. 2021 Nov 17;13(45):54466-54475. doi: 10.1021/acsami.1c13675. Epub 2021 Nov 5.
Understanding metal-to-insulator phase transitions in solids has been a keystone not only for discovering novel physical phenomena in condensed matter physics but also for achieving scientific breakthroughs in materials science. In this work, we demonstrate that the transport properties (i.e., resistivity and transition temperature) in the metal-to-insulator transitions of perovskite nickelates are tunable via the epitaxial heterojunctions of LaNiO and NdNiO thin films. A mismatch in the oxygen coordination environment and interfacial octahedral coupling at the oxide heterointerface allows us to realize an exotic phase that is unattainable in the parent compound. With oxygen vacancy formation for strain accommodation, the topmost LaNiO layer in LaNiO/NdNiO bilayer thin films is structurally engineered and it electrically undergoes a metal-to-insulator transition that does not appear in metallic LaNiO. Modification of the NdNiO template layer thickness provides an additional knob for tailoring the tilting angles of corner-connected NiO octahedra and the linked transport characteristics further. Our approaches can be harnessed to tune physical properties in complex oxides and to realize exotic physical phenomena through oxide thin-film heterostructuring.
理解固体中的金属-绝缘体相变不仅是在凝聚态物理中发现新物理现象的关键,也是在材料科学中取得科学突破的关键。在这项工作中,我们证明了钙钛矿镍酸盐的金属-绝缘体转变中的输运性质(即电阻率和转变温度)可以通过LaNiO和NdNiO薄膜的外延异质结来调节。氧化物异质界面处氧配位环境和界面八面体耦合的不匹配使我们能够实现母体化合物中无法实现的奇特相。通过形成氧空位以适应应变,LaNiO/NdNiO双层薄膜中的最顶层LaNiO层在结构上得到了设计,并且其电学性质经历了金属-绝缘体转变,而这种转变在金属性的LaNiO中并未出现。改变NdNiO模板层的厚度为进一步调整角连接的NiO八面体的倾斜角度和相关的输运特性提供了另一种手段。我们的方法可用于调节复杂氧化物中的物理性质,并通过氧化物薄膜异质结构实现奇特的物理现象。