Dong Mingdong, Zhang Yichi, Cao Jing-Ming, Chen Haowen, Lu Qiyang, Wang Hong-Fei, Wu Jie
Department of Physics, School of Science, Westlake University, Hangzhou, 310030, China.
Research Center for Industries of the Future, Westlake University, Hangzhou, 310030, China.
Adv Sci (Weinh). 2024 Oct;11(40):e2408329. doi: 10.1002/advs.202408329. Epub 2024 Aug 29.
The discovery of polar metal opens the door to incorporating electric polarization into electronics with the potential to invigorate next-generation multifunctional electronic devices. Especially, electric polarization can be induced by geometric design in non-polar perovskite oxides. Here, the epitaxial strain exerted on the deposited single-crystalline NdNiO thin films is systematically varied in both sign and amplitude by choosing substrates with different lattice mismatch. The pseudocubic NdNiO(111) film, which is non-polar in its bulk state, is induced to be polar under both compressive and tensile strain. The fine-tuning of epitaxial strain is realized by continuously varying the film thickness using the "thickness-wedge" growth technique, and from the elucidated thickness dependence, the electric polarization and metallicity can be further optimized. Moreover, transitioning from isotropic to anisotropic epitaxial strain gives rise to an ideal polar metal state in the pseudocubic NdNiO(102) film on an orthorhombic substrate, achieving a remarkably low resistivity of 173 µΩ cm at room temperature. The metal-insulator transition in NdNiO is completely suppressed and the polar metal state becomes the ground state at all temperatures. These results demonstrate alluring possibilities of induction and manipulation of both electric polarization and electric transport properties in functional perovskite oxides by epitaxial strain engineering.
极性金属的发现为将电极化引入电子学打开了大门,有望为下一代多功能电子设备注入活力。特别是,在非极性钙钛矿氧化物中,电极化可通过几何设计来诱导。在此,通过选择具有不同晶格失配的衬底,系统地改变施加在沉积的单晶钕镍氧化物(NdNiO)薄膜上的外延应变的符号和幅度。块状状态下为非极性的赝立方NdNiO(111)薄膜,在压缩应变和拉伸应变下均被诱导为极性。通过使用“厚度楔形”生长技术连续改变薄膜厚度来实现外延应变的微调,从阐明的厚度依赖性可知,电极化和金属性可进一步优化。此外,从各向同性外延应变转变为各向异性外延应变,在正交衬底上的赝立方NdNiO(102)薄膜中产生了理想的极性金属状态,在室温下实现了低至173 μΩ·cm的电阻率。NdNiO中的金属 - 绝缘体转变被完全抑制,极性金属状态在所有温度下都成为基态。这些结果证明了通过外延应变工程在功能性钙钛矿氧化物中诱导和操纵电极化及电输运性质的诱人可能性。