Suppr超能文献

通过机器学习预测共轭寡聚电解质分子的抗菌活性。

Predicting Antimicrobial Activity of Conjugated Oligoelectrolyte Molecules via Machine Learning.

机构信息

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore.

出版信息

J Am Chem Soc. 2021 Nov 17;143(45):18917-18931. doi: 10.1021/jacs.1c05055. Epub 2021 Nov 5.

Abstract

New antibiotics are needed to battle growing antibiotic resistance, but the development process from hit, to lead, and ultimately to a useful drug takes decades. Although progress in molecular property prediction using machine-learning methods has opened up new pathways for aiding the antibiotics development process, many existing solutions rely on large data sets and finding structural similarities to existing antibiotics. Challenges remain in modeling unconventional antibiotic classes that are drawing increasing research attention. In response, we developed an antimicrobial activity prediction model for conjugated oligoelectrolyte molecules, a new class of antibiotics that lacks extensive prior structure-activity relationship studies. Our approach enables us to predict the minimum inhibitory concentration for K12, with 21 molecular descriptors selected by recursive elimination from a set of 5305 descriptors. This predictive model achieves an of 0.65 with no prior knowledge of the underlying mechanism. We find the molecular representation optimum for the domain is the key to good predictions of antimicrobial activity. In the case of conjugated oligoelectrolytes, a representation reflecting the three-dimensional shape of the molecules is most critical. Although it is demonstrated with a specific example of conjugated oligoelectrolytes, our proposed approach for creating the predictive model can be readily adapted to other novel antibiotic candidate domains.

摘要

需要新的抗生素来对抗不断增长的抗生素耐药性,但从发现、先导化合物到最终成为有用药物的开发过程需要几十年的时间。尽管使用机器学习方法进行分子性质预测的进展为辅助抗生素开发过程开辟了新的途径,但许多现有解决方案依赖于大型数据集和寻找与现有抗生素的结构相似性。在建模越来越受到关注的非常规抗生素类别方面仍然存在挑战。为了应对这一挑战,我们开发了一种针对共轭寡聚电解质分子的抗菌活性预测模型,这是一类缺乏广泛的结构-活性关系研究的新型抗生素。我们的方法使我们能够预测 K12 的最小抑菌浓度,从 5305 个描述符中通过递归消除选择了 21 个分子描述符。这个预测模型在没有潜在机制先验知识的情况下达到了 0.65 的 。我们发现,对于该领域来说,最佳的分子表示是抗菌活性良好预测的关键。在共轭寡聚电解质的情况下,反映分子三维形状的表示形式是最重要的。尽管这是通过共轭寡聚电解质的具体示例来证明的,但我们提出的创建预测模型的方法可以很容易地应用于其他新型抗生素候选领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验