Suppr超能文献

基于新型机器学习技术的混合模型(LR-KNN-ANN 和 SVM)在地下水氟牙症预测中的应用。

Novel machine learning techniques based hybrid models (LR-KNN-ANN and SVM) in prediction of dental fluorosis in groundwater.

机构信息

Computer Engineering Department, Siirt University, Siirt, Turkey.

Environmental Engineering Department, Harran University, Şanlıurfa, Turkey.

出版信息

Environ Geochem Health. 2022 Nov;44(11):3891-3905. doi: 10.1007/s10653-021-01148-x. Epub 2021 Nov 5.

Abstract

Studies have shown that excessive intake of fluoride into human body from drinking water may cause fluorosis adversely affects teeth and bones. Fluoride in water is mostly of geological origin and the amounts depend highly on many factors such as availability and solubility of fluoride minerals as well as hydrogeological and geochemical conditions. Chemical methods usually accomplish fluoride analysis in drinking water. The chemical methods are expensive, labor-intensive and time-consuming in general although accurate and reliable results are obtained. An alternative cost-effective approach based on machine learning (ML) technique is investigated in this study. Furthermore, most effective input parameters are selected via proposed Simulated Annealing (SA) search scheme. Selected subset (SAR, K, NO, NO, Mn, Ba and Fe) by SA algorithm exhibited high correlation coefficient values of 0.731 and strong t test scores of 5.248. On the other hand, most frequently selected individual features were identified as NO, NO, Fe and SAR by vote map. The results of experiments revealed that selected feature subset improves the prediction performance of the learning models while feature size is reduced substantially. Thus it eventually enabled determination of fluoride in a cheap, fast and feasible way.

摘要

研究表明,人体从饮水中摄入过多的氟化物可能会导致氟中毒,对牙齿和骨骼产生不良影响。水中的氟化物主要来源于地质成因,其含量高度取决于多种因素,如氟化物矿物的可用性和溶解度以及水文地质和地球化学条件。化学方法通常用于饮用水中的氟化物分析。虽然可以得到准确可靠的结果,但这些化学方法通常昂贵、劳动强度大且耗时。本研究探讨了一种基于机器学习 (ML) 技术的替代经济有效的方法。此外,还通过提出的模拟退火 (SA) 搜索方案选择了最有效的输入参数。SA 算法选择的子集(SAR、K、NO、NO、Mn、Ba 和 Fe)表现出 0.731 的高相关系数值和 5.248 的强 t 检验分数。另一方面,通过投票图确定了最常选择的单个特征为 NO、NO、Fe 和 SAR。实验结果表明,选择的特征子集提高了学习模型的预测性能,同时大大减少了特征的数量。因此,最终可以以廉价、快速和可行的方式确定氟化物的含量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验