Suppr超能文献

人工智能驱动的诊断工具对幼儿龋齿治疗决策的影响:准确性和临床结果的系统评价

Influence of Artificial Intelligence-Driven Diagnostic Tools on Treatment Decision-Making in Early Childhood Caries: A Systematic Review of Accuracy and Clinical Outcomes.

作者信息

Al-Namankany Abeer

机构信息

Paediatric Dentistry and Orthodontics Department, College of Dentistry, Taibah University, P.O. Box 41141, Almadinah Almunawwarah 38008, Saudi Arabia.

出版信息

Dent J (Basel). 2023 Sep 12;11(9):214. doi: 10.3390/dj11090214.

Abstract

Early detection and accurate prediction of the risk of early childhood caries (ECC) are essential for effective prevention and management. This systematic review aims to assess the performance and applicability of machine learning algorithms in ECC prediction and detection. A comprehensive search was conducted to identify studies utilizing machine learning algorithms to predict or detect ECC. The included (n = 6) studies demonstrated high accuracy, sensitivity, specificity, and area under the receiver operating characteristic (AUC) values related to predicting and detecting ECC. The application of machine learning algorithms contributed to enhanced clinical decision-making, targeted preventive measures, and improved ECC management. The studies also highlighted the importance of considering multiple factors, including demographic, environmental, and genetic factors, when developing dental caries prediction models. Machine learning algorithms hold significant potential for ECC prediction and detection, having promising performance outcomes. Due to the heterogeneity of the studies, no meta-analysis could be performed. Moreover, further research is needed to explore the feasibility, acceptability, and effectiveness of integrating these algorithms into dental practice. This approach would ultimately contribute to enabling more effective and personalized dental caries management and improved oral health outcomes for diverse populations.

摘要

早期发现和准确预测幼儿龋齿(ECC)风险对于有效预防和管理至关重要。本系统评价旨在评估机器学习算法在ECC预测和检测中的性能及适用性。进行了全面检索以识别利用机器学习算法预测或检测ECC的研究。纳入的(n = 6)项研究在预测和检测ECC方面显示出与高准确性、敏感性、特异性以及受试者工作特征曲线下面积(AUC)值相关。机器学习算法的应用有助于加强临床决策、采取有针对性的预防措施并改善ECC管理。这些研究还强调了在开发龋齿预测模型时考虑多种因素的重要性,包括人口统计学、环境和遗传因素。机器学习算法在 ECC 预测和检测方面具有巨大潜力,取得了有前景的性能结果。由于研究的异质性,无法进行荟萃分析。此外,需要进一步研究来探索将这些算法整合到牙科实践中的可行性、可接受性和有效性。这种方法最终将有助于实现更有效和个性化的龋齿管理,并改善不同人群的口腔健康结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e1/10530226/908074ea8662/dentistry-11-00214-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验