Ye Zhaoqi, Zhao Yang, Zhang Hongbin, Shi Zhangping, Li He, Yang Xue, Wang Lei, Kong Lingtao, Zhang Chunna, Sheng Zhizheng, Zhang Yahong, Tang Yi
Department of Chemistry, Laboratory of Advanced Materials, Collaborative Innovation Center of Chemistry for Energy Materials and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
Institute for Preservation of Chinese Ancient Books, Fudan University Library, Fudan University, 200433 Shanghai, China.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 2):1366-1376. doi: 10.1016/j.jcis.2021.10.125. Epub 2021 Oct 26.
It is a Holy Grail to realize the goal-oriented synthesis of zeotype crystals via direct thermodynamic/kinetic control of crystallization in the simplest inorganic system. Especially, the most commonly used counter cations (i.e., Na and K) are in turn believed to play merely the role of balancing charges and stabilizing frameworks, which make the simple ion-based morphology/porosity control remain big challenges.
We re-examined the role of Na and K to fine-tune the classical/nonclassical crystallization process in a seed-induced system with the simplest composition (Si/Al sources, inorganic alkali, and HO), and proposed an "ion switch" strategy. By analyzing the multiple growth curves, tracking the precursor evolution, and observing epitaxial crystallization behavior, a distinctive "ion switch"-worked nonclassical mechanism was uncovered.
By the "ion switch" strategy, ZSM-5 mesocrystals were fine-regulated with diverse architecture from single crystal to nanocrystallite assembly and intracrystal mesopore-enriched crystal. Such simple ions-controlled crystallization was achieved through microstructure heterogeneity of zeolitic building-blocks triggered by different counterions and their corresponding assembly behavior from oriented attachment to random deposition. Furthermore, this protocol can be extended to a wider HO/SiO range, mixed Na/K systems, and other alkali metal ions from Li to Cs, and ZSM-5 mesocrystals with extended morphologies can be obtained.
在最简单的无机体系中,通过对结晶过程进行直接的热力学/动力学控制来实现目标导向的沸石型晶体合成,这是一个圣杯式的难题。特别是,人们认为最常用的抗衡阳离子(即Na和K)仅仅起到平衡电荷和稳定骨架的作用,这使得基于简单离子的形貌/孔隙率控制仍然面临巨大挑战。
我们重新审视了Na和K在一个组成最简单的种子诱导体系(硅/铝源、无机碱和水)中对经典/非经典结晶过程进行微调的作用,并提出了一种“离子开关”策略。通过分析多条生长曲线、追踪前驱体演变以及观察外延结晶行为,发现了一种独特的“离子开关”起作用的非经典机制。
通过“离子开关”策略,ZSM-5中晶可以被精细调控,形成从单晶到纳米微晶聚集体以及富含晶内介孔晶体的多种结构。这种简单的离子控制结晶是通过不同抗衡离子引发的沸石结构单元的微观结构异质性及其从定向附着到随机沉积的相应组装行为实现的。此外,该方法可以扩展到更宽的水/二氧化硅范围、混合Na/K体系以及从Li到Cs的其他碱金属离子体系,并且可以获得具有扩展形貌的ZSM-5中晶。