Suppr超能文献

东南极高原生物成因气溶胶作为南大洋海-气相互作用的代用指标。

Biogenic aerosol in central East Antarctic Plateau as a proxy for the ocean-atmosphere interaction in the Southern Ocean.

机构信息

Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence I-50019, Italy; Institute of Polar Sciences, ISP-CNR, University of Venice, V. Torino 155, 30172 Venice-Mestre, Italy.

University of British Columbia, Institute for the Oceans and Fisheries, Vancouver, BC V6T1Z4, Canada; University of Victoria, Department of Geography, Victoria, BC V8W2Y2, Canada.

出版信息

Sci Total Environ. 2022 Mar 1;810:151285. doi: 10.1016/j.scitotenv.2021.151285. Epub 2021 Nov 2.

Abstract

Ten years of data of biogenic aerosol (methane sulfonic acid, MSA, and non-sea salt sulfate, nssSO) collected at Concordia Station in the East Antarctic plateau (75° 06' S, 123° 20' E) are interpreted as a function of the Southern Annular Mode (SAM), Chlorophyll-a concentration (Chl-a; a proxy for phytoplankton biomass), sea ice extent and area. It is possible to draw three different scenarios that link these parameters in early, middle, and late summer. In early summer, the biogenic aerosol is significantly correlated to sea ice retreats through the phytoplankton biomass increases. Chl-a shows a significant correlation with nssSO in the finest fraction (< 1 μm). In contrast, only Chl-a in West Pacific and Indian Ocean sectors correlates with MSA in the coarse fraction. The transport routes towards the inner Antarctic plateau and aerosol formation processes could explain the different correlation patterns of the two compounds both resulting from the DMS oxidation. In mid-summer, Chl-a concentrations are at the maximum and are not related to sea ice melting. Due to the complexity of transport processes of air masses towards the Antarctic plateau, the MSA concentrations are low and not related to Chl-a concentration. In late summer, MSA and nssSO present the highest concentrations in their submicrometric aerosol fraction, and both are significantly correlated with Chl-a but not with the sea ice. In early and mid-summer, the enhanced efficiency of transport processes from all the surrounding oceanic sectors with air masses traveling at low elevation can explain the highest concentrations of nssSO and especially MSA. Finally, considering the entire time series, MSA shows significant year-to-year variability. This variability is significantly correlated with SAM but with a different time lag in early (0-month lag) and late summer (4-months lag). This correlation likely occurs through the effect of the SAM on phytoplankton blooms.

摘要

在东南极高原的康科迪亚站(南纬 75°06',东经 123°20')收集了十年的生物成因气溶胶(甲磺酸,MSA 和非海盐硫酸盐,nssSO)数据,将其解释为南极环状模式(SAM)、叶绿素-a 浓度(Chl-a;浮游植物生物量的代理)、海冰范围和面积的函数。可以绘制三个不同的情景,将这些参数在夏初、夏中和夏末联系起来。在夏初,生物成因气溶胶通过浮游植物生物量的增加与海冰撤退显著相关。Chl-a 与<1μm 最细颗粒中的 nssSO 呈显著相关。相反,只有西太平洋和印度洋扇区的 Chl-a 与粗颗粒中的 MSA 相关。向南极内陆高原的输送路径和气溶胶形成过程可以解释两种化合物的不同相关模式,这两种化合物都是 DMS 氧化的结果。在仲夏,Chl-a 浓度达到最大值,与海冰融化无关。由于向南极高原输送空气团的过程复杂,MSA 浓度较低,与 Chl-a 浓度无关。在夏末,MSA 和 nssSO 在亚微米气溶胶颗粒中浓度最高,两者与 Chl-a 呈显著相关,但与海冰无关。在夏初和夏中,来自所有周边海洋扇区的空气团以低海拔输送的效率提高,可以解释 nssSO 特别是 MSA 的最高浓度。最后,考虑到整个时间序列,MSA 表现出显著的年际变化。这种可变性与 SAM 显著相关,但在夏初(0 个月滞后)和夏末(4 个月滞后)有不同的时间滞后。这种相关性可能通过 SAM 对浮游植物爆发的影响而发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验