Suppr超能文献

核医学与人工智能:算法开发的最佳实践。

Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development.

机构信息

Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin;

Department of Radiology and Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centres, Amsterdam, The Netherlands.

出版信息

J Nucl Med. 2022 Apr;63(4):500-510. doi: 10.2967/jnumed.121.262567. Epub 2021 Nov 5.

Abstract

The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging.

摘要

核医学领域在开发人工智能 (AI) 算法方面引起了学术界和商业界的浓厚兴趣。用户和开发者可以通过识别和遵循 AI 算法开发的最佳实践来避免一些 AI 陷阱。本文提供了在核医学中开发 AI 算法的技术最佳实践建议,首先是一般建议,然后继续描述如何针对核医学中的特定主题实践这些原则。本报告由核医学与分子影像学会的人工智能工作组编写。

相似文献

5
Artificial intelligence for nuclear medicine in oncology.人工智能在肿瘤核医学中的应用。
Ann Nucl Med. 2022 Feb;36(2):123-132. doi: 10.1007/s12149-021-01693-6. Epub 2022 Jan 14.
6
An EANM position paper on the application of artificial intelligence in nuclear medicine.核医学中人工智能应用的 EANM 立场文件。
Eur J Nucl Med Mol Imaging. 2022 Dec;50(1):61-66. doi: 10.1007/s00259-022-05947-x. Epub 2022 Aug 25.
7
Intelligent Imaging: Artificial Intelligence Augmented Nuclear Medicine.智能成像:人工智能增强型核医学
J Nucl Med Technol. 2019 Sep;47(3):217-222. doi: 10.2967/jnmt.119.232462. Epub 2019 Aug 10.
8
How to Design AI-Driven Clinical Trials in Nuclear Medicine.如何设计核医学中的人工智能驱动临床试验。
Semin Nucl Med. 2021 Mar;51(2):112-119. doi: 10.1053/j.semnuclmed.2020.09.003. Epub 2020 Oct 17.

引用本文的文献

本文引用的文献

5
Evaluation of Automated Public De-Identification Tools on a Corpus of Radiology Reports.放射学报告语料库中自动去识别工具的评估
Radiol Artif Intell. 2020 Oct 14;2(6):e190137. doi: 10.1148/ryai.2020190137. eCollection 2020 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验