Suppr超能文献

氟[F]-去铁胺正电子发射断层扫描与 CT 血管造影定量斑块分析预测心肌梗死未来风险的机器学习研究

Machine Learning with F-Sodium Fluoride PET and Quantitative Plaque Analysis on CT Angiography for the Future Risk of Myocardial Infarction.

机构信息

Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.

BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

J Nucl Med. 2022 Jan;63(1):158-165. doi: 10.2967/jnumed.121.262283. Epub 2021 Apr 23.

Abstract

Coronary F-sodium fluoride (F-NaF) PET and CT angiography-based quantitative plaque analysis have shown promise in refining risk stratification in patients with coronary artery disease. We combined both of these novel imaging approaches to develop an optimal machine-learning model for the future risk of myocardial infarction in patients with stable coronary disease. Patients with known coronary artery disease underwent coronary F-NaF PET and CT angiography on a hybrid PET/CT scanner. Machine-learning by extreme gradient boosting was trained using clinical data, CT quantitative plaque analysis, measures and F-NaF PET, and it was tested using repeated 10-fold hold-out testing. Among 293 study participants (65 ± 9 y; 84% male), 22 subjects experienced a myocardial infarction over the 53 (40-59) months of follow-up. On univariable receiver-operator-curve analysis, only F-NaF coronary uptake emerged as a predictor of myocardial infarction (c-statistic 0.76, 95% CI 0.68-0.83). When incorporated into machine-learning models, clinical characteristics showed limited predictive performance (c-statistic 0.64, 95% CI 0.53-0.76) and were outperformed by a quantitative plaque analysis-based machine-learning model (c-statistic 0.72, 95% CI 0.60-0.84). After inclusion of all available data (clinical, quantitative plaque and F-NaF PET), we achieved a substantial improvement ( = 0.008 versus F-NaF PET alone) in the model performance (c-statistic 0.85, 95% CI 0.79-0.91). Both F-NaF uptake and quantitative plaque analysis measures are additive and strong predictors of outcome in patients with established coronary artery disease. Optimal risk stratification can be achieved by combining clinical data with these approaches in a machine-learning model.

摘要

冠状动脉 F-氟化钠(F-NaF)PET 和 CT 血管造影定量斑块分析已显示出在细化冠心病患者风险分层方面的潜力。我们结合这两种新的成像方法,为稳定型冠状动脉疾病患者未来发生心肌梗死的风险开发了一种最佳的机器学习模型。已知患有冠状动脉疾病的患者在混合 PET/CT 扫描仪上接受冠状动脉 F-NaF PET 和 CT 血管造影检查。使用极端梯度增强的机器学习技术,使用临床数据、CT 定量斑块分析、测量值和 F-NaF PET 进行训练,并使用重复的 10 折交叉验证进行测试。在 293 名研究参与者(65±9 岁;84%为男性)中,22 名参与者在 53(40-59)个月的随访中发生心肌梗死。在单变量接受者操作特征曲线分析中,只有 F-NaF 冠状动脉摄取是心肌梗死的预测因子(c 统计量 0.76,95%CI 0.68-0.83)。当将其纳入机器学习模型时,临床特征显示出有限的预测性能(c 统计量 0.64,95%CI 0.53-0.76),并优于基于定量斑块分析的机器学习模型(c 统计量 0.72,95%CI 0.60-0.84)。纳入所有可用数据(临床、定量斑块和 F-NaF PET)后,模型性能得到了实质性提高(=0.008 与单独使用 F-NaF PET 相比)(c 统计量 0.85,95%CI 0.79-0.91)。F-NaF 摄取和定量斑块分析测量值都是已确诊冠状动脉疾病患者结局的附加和强大预测因子。通过将临床数据与机器学习模型中的这些方法相结合,可以实现最佳的风险分层。

相似文献

引用本文的文献

8
Coronary artery calcification: concepts and clinical applications.冠状动脉钙化:概念与临床应用
Ann Med Surg (Lond). 2024 Apr 3;86(5):2848-2855. doi: 10.1097/MS9.0000000000002016. eCollection 2024 May.

本文引用的文献

10
Detection and Prediction of Bioprosthetic Aortic Valve Degeneration.生物瓣主动脉瓣退化的检测与预测。
J Am Coll Cardiol. 2019 Mar 19;73(10):1107-1119. doi: 10.1016/j.jacc.2018.12.056.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验