Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht 3584, The Netherlands.
Laboratory for Haemostasis, Inflammation and Thrombosis, INSERM, Unité Mixte de Recherche 1176, Université Paris-Saclay 94276 Le Kremlin-Bicêtre, France.
Proc Natl Acad Sci U S A. 2021 Nov 9;118(45). doi: 10.1073/pnas.2108458118.
Serine proteases are essential for many physiological processes and require tight regulation by serine protease inhibitors (SERPINs). A disturbed SERPIN-protease balance may result in disease. The reactive center loop (RCL) contains an enzymatic cleavage site between the P1 through P1' residues that controls SERPIN specificity. This RCL can be modified to improve SERPIN function; however, a lack of insight into sequence-function relationships limits SERPIN development. This is complicated by more than 25 billion mutants needed to screen the entire P4 to P4' region. Here, we developed a platform to predict the effects of RCL mutagenesis by using α1-antitrypsin as a model SERPIN. We generated variants for each of the residues in P4 to P4' region, mutating them into each of the 20 naturally occurring amino acids. Subsequently, we profiled the reactivity of the resulting 160 variants against seven proteases involved in coagulation. These profiles formed the basis of an in silico prediction platform for SERPIN inhibitory behavior with combined P4 to P4' RCL mutations, which were validated experimentally. This prediction platform accurately predicted SERPIN behavior against five out of the seven screened proteases, one of which was activated protein C (APC). Using these findings, a next-generation APC-inhibiting α1-antitrypsin variant was designed (KMPR/RIRA; / indicates the cleavage site). This variant attenuates blood loss in an in vivo hemophilia A model at a lower dosage than the previously developed variant AIKR/KIPP because of improved potency and specificity. We propose that this SERPIN-based RCL mutagenesis approach improves our understanding of SERPIN behavior and will facilitate the design of therapeutic SERPINs.
丝氨酸蛋白酶对于许多生理过程至关重要,需要丝氨酸蛋白酶抑制剂 (SERPINs) 进行严格的调节。丝氨酸蛋白酶抑制剂-蛋白酶平衡的破坏可能导致疾病。反应中心环 (RCL) 在 P1 到 P1' 残基之间包含一个酶切位点,控制 SERPIN 的特异性。可以修饰这个 RCL 来改善 SERPIN 的功能;然而,由于缺乏对序列-功能关系的深入了解,限制了 SERPIN 的发展。这是因为需要筛选整个 P4 到 P4' 区域的超过 250 亿个突变体,情况变得更加复杂。在这里,我们开发了一个平台,通过使用α1-抗胰蛋白酶作为模型 SERPIN,来预测 RCL 突变的影响。我们对 P4 到 P4' 区域的每个残基都生成了变体,将它们突变成 20 种天然存在的氨基酸中的每一种。随后,我们对 160 种变体对参与凝血的 7 种蛋白酶的反应性进行了分析。这些图谱构成了具有组合 P4 到 P4' RCL 突变的 SERPIN 抑制行为的计算预测平台的基础,该平台通过实验进行了验证。该预测平台准确地预测了 SERPIN 对筛选出的 7 种蛋白酶中的 5 种的行为,其中一种是激活蛋白 C (APC)。利用这些发现,设计了一种下一代抑制 APC 的α1-抗胰蛋白酶变体 (KMPR/RIRA; / 表示切割位点)。与之前开发的变体 AIKR/KIPP 相比,由于效力和特异性的提高,这种变体在较低剂量下可减少体内血友病 A 模型的出血。我们提出,这种基于 SERPIN 的 RCL 诱变方法提高了我们对 SERPIN 行为的理解,并将促进治疗性 SERPIN 的设计。