Biocatalysis and Synthetic Biology Team, CSIRO Land and Water, Black Mountain Science and Innovation Precinct, Canberra, ACT, Australia.
Synthetic Biology Future Science Platform, Black Mountain Science and Innovation Precinct, Canberra, ACT, Australia.
Sci Rep. 2021 Nov 5;11(1):21774. doi: 10.1038/s41598-021-01224-3.
The deazaflavin cofactor F is a low-potential, two-electron redox cofactor produced by some Archaea and Eubacteria that is involved in methanogenesis and methanotrophy, antibiotic biosynthesis, and xenobiotic metabolism. However, it is not produced by bacterial strains commonly used for industrial biocatalysis or recombinant protein production, such as Escherichia coli, limiting our ability to exploit it as an enzymatic cofactor and produce it in high yield. Here we have utilized a genome-scale metabolic model of E. coli and constraint-based metabolic modelling of cofactor F biosynthesis to optimize F production in E. coli. This analysis identified phospho-enol pyruvate (PEP) as a limiting precursor for F biosynthesis, explaining carbon source-dependent differences in productivity. PEP availability was improved by using gluconeogenic carbon sources and overexpression of PEP synthase. By improving PEP availability, we were able to achieve a ~ 40-fold increase in the space-time yield of F compared with the widely used recombinant Mycobacterium smegmatis expression system. This study establishes E. coli as an industrial F-production system and will allow the recombinant in vivo use of F-dependent enzymes for biocatalysis and protein engineering applications.
脱氮黄素辅因子 F 是一种低电势、两电子氧化还原辅因子,由一些古菌和细菌产生,参与甲烷生成和甲烷营养作用、抗生素生物合成和外来化合物代谢。然而,它不是由常用于工业生物催化或重组蛋白生产的细菌菌株产生的,如大肠杆菌,限制了我们将其用作酶辅因子并高产的能力。在这里,我们利用大肠杆菌的基因组规模代谢模型和辅因子 F 生物合成的基于约束的代谢建模来优化大肠杆菌中的 F 生产。这项分析确定磷酸烯醇丙酮酸 (PEP) 是 F 生物合成的限制前体,解释了生产力的碳源依赖性差异。通过使用糖异生碳源和过表达磷酸烯醇丙酮酸羧激酶来提高 PEP 的可用性。通过提高 PEP 的可用性,我们能够使 F 的时空产率比广泛使用的重组耻垢分枝杆菌表达系统提高约 40 倍。这项研究确立了大肠杆菌作为工业 F 生产系统,并将允许在体内重组使用依赖 F 的酶进行生物催化和蛋白质工程应用。