Suppr超能文献

具有可调接枝密度和粒子间氢键相互作用的聚合物接枝纳米粒子 (PGNs)。

Polymer-Grafted Nanoparticles (PGNs) with Adjustable Graft-Density and Interparticle Hydrogen Bonding Interaction.

机构信息

Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.

出版信息

Macromol Rapid Commun. 2022 Jun;43(12):e2100629. doi: 10.1002/marc.202100629. Epub 2021 Nov 17.

Abstract

Polymer-grafted nanoparticles (PGNs) receive great attention because they possess the advantages of both the grafted polymer and inorganic cores, and thus demonstrate superior optical, electronic, and mechanical properties. Thus, PGNs with tailorable interparticle interactions are indispensable for the formation of a superlattice with a defined and ordered structure. In this work, the synthesis of PGNs is reported which can form interparticle hydrogen-bonding to enhance the formation of well-defined 2D nanoparticle arrays. Various polymers, including poly(4-vinyl pyridine) (P4VP), poly(dimethyl aminoethyl acrylate) (PDMAEMA), and poly(4-acetoxy styrene) (PAcS), are attached to silica cores by a "grafting from" in a mini emulsion-like synthesis approach. SiO -PAcS brushes are deprotected by hydrazinolysis and converted into poly(4-vinyl phenol) (PVP), containing hydroxyl groups as potential hydrogen-bonding donor sites. Understanding and controlling interparticle interactions by varying grafting density in the range of 10 -10 chain nm , and the formation of interparticle hydrogen bonding relevant for self-assembly of PGNs and potential formation of PGN superlattice structures are the motivations for this study.

摘要

接枝纳米粒子(PGNs)受到了广泛关注,因为它们兼具接枝聚合物和无机核的优点,从而表现出优异的光学、电子和机械性能。因此,具有可调节的粒子间相互作用的 PGNs 对于形成具有明确和有序结构的超晶格是不可或缺的。在这项工作中,报道了可以形成粒子间氢键的 PGNs 的合成方法,从而增强了二维纳米粒子阵列的形成。各种聚合物,包括聚(4-乙烯基吡啶)(P4VP)、聚(二甲基氨基乙基丙烯酰胺)(PDMAEMA)和聚(4-乙酰氧基苯乙烯)(PAcS),通过“从”mini 乳液样合成方法接枝到二氧化硅核上。SiO2-PAcS 刷通过肼解脱保护并转化为含有羟基的聚(4-乙烯基苯酚)(PVP),作为潜在的氢键供体位点。通过改变接枝密度(10-10 链 nm 范围内)来理解和控制粒子间相互作用,以及与 PGNs 自组装相关的粒子间氢键的形成,是本研究的动机。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验