Barrow Neurological Institute, Phoenix, AZ (S.A., A.K., A.F.D.).
Phoenix Veterans Affairs Healthcare System, AZ (S.A., S.T., N.K., D.R.G., J.L., R.Q.M.).
Stroke. 2022 Feb;53(2):e37-e41. doi: 10.1161/STROKEAHA.121.037120. Epub 2021 Nov 8.
Neuroprotective strategies for stroke remain inadequate. Nanoliposomes comprised of phosphatidylcholine, cholesterol, and monosialogangliosides (nanoliposomes) induced an antioxidant protective response in endothelial cells exposed to amyloid insults. We tested the hypotheses that nanoliposomes will preserve human neuroblastoma (SH-SY5Y) and human brain microvascular endothelial cells viability following oxygen-glucose deprivation (OGD)-reoxygenation and will reduce injury in mice following middle cerebral artery occlusion.
SH-SY5Y and human brain microvascular endothelial cells were exposed to oxygen-glucose deprivation-reoxygenation (3 hours 0.5%-1% oxygen and glucose-free media followed by 20-hour ambient air/regular media) without or with nanoliposomes (300 µg/mL). Viability was measured (calcein-acetoxymethyl fluorescence) and protein expression of antioxidant proteins HO-1 (heme oxygenase-1), NQO1 (NAD[P]H quinone dehydrogenase 1), and SOD1 (superoxide dismutase 1) were measured by Western blot. C57BL/6J mice were treated with saline (n=8) or nanoliposomes (10 mg/mL lipid, 200 µL, n=7) while undergoing 60-minute middle cerebral artery occlusion followed by reperfusion. Day 2 postinjury neurological impairment score and infarction size were compared.
SH-SY5Y and human brain microvascular endothelial cells showed reduced viability post-oxygen-glucose deprivation-reoxygenation that was reversed by nanoliposomes. Nanoliposomes increased protein expressions of HO-1, NQO1 in both cell types and SOD1 in human brain microvascular endothelial cells. Nanoliposomes-treated mice showed reduced neurological impairment and brain infarct size (18.8±2% versus 27.3±2.3%, =0.017) versus controls.
Nanoliposomes reduced stroke injury in mice subjected to middle cerebral artery occlusion likely through induction of an antioxidant protective response. Nanoliposome is a candidate novel agent for stroke.
卒中的神经保护策略仍然不足。由磷脂酰胆碱、胆固醇和单唾液酸神经节苷脂组成的纳米脂质体(nanoliposomes)可诱导暴露于淀粉样蛋白刺激的内皮细胞产生抗氧化保护反应。我们检验了以下假设:纳米脂质体将在氧葡萄糖剥夺(OGD)-再氧合后保留人神经母细胞瘤(SH-SY5Y)和人脑微血管内皮细胞的活力,并减少大脑中动脉闭塞后小鼠的损伤。
SH-SY5Y 和人脑微血管内皮细胞暴露于氧葡萄糖剥夺-再氧合(3 小时 0.5%-1%氧气和无糖培养基,随后 20 小时常氧/常规培养基),无或有纳米脂质体(300μg/ml)。通过 calcein-acetoxymethyl 荧光法测量活力,并通过 Western blot 测量抗氧化蛋白 HO-1(血红素加氧酶-1)、NQO1(NAD[P]H 醌氧化还原酶 1)和 SOD1(超氧化物歧化酶 1)的蛋白表达。C57BL/6J 小鼠接受盐水(n=8)或纳米脂质体(10mg/ml 脂质,200μl,n=7)治疗,同时进行 60 分钟大脑中动脉闭塞,然后再灌注。比较损伤后第 2 天的神经功能缺损评分和梗死面积。
SH-SY5Y 和人脑微血管内皮细胞在氧葡萄糖剥夺-再氧合后活力降低,而纳米脂质体可逆转这种降低。纳米脂质体增加了两种细胞类型中 HO-1、NQO1 的蛋白表达和人脑微血管内皮细胞中 SOD1 的蛋白表达。与对照组相比,纳米脂质体治疗的小鼠表现出较少的神经功能缺损和脑梗死面积(18.8±2%对 27.3±2.3%,=0.017)。
纳米脂质体通过诱导抗氧化保护反应,减少了大脑中动脉闭塞小鼠的卒中损伤。纳米脂质体是一种有前途的卒中治疗新药物。