David Packard Electrical Engineering Building, Stanford University, Stanford, California, USA.
Nat Methods. 2011 Sep 11;8(10):871-8. doi: 10.1038/nmeth.1694.
The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals for relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including a semiconductor light source and sensor. This device enables high-speed cellular imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens.
传统的光学显微镜体积庞大,价格昂贵。如果将其微型化并集成化,就能够基于大量生产的微型显微镜开发出许多新的应用。关键的潜在用途包括在行为动物的大脑成像,以将细胞动力学与动物行为联系起来。在这里,我们引入了一种由大量生产的部件制成的微型(1.9 克)集成荧光显微镜,包括半导体光源和传感器。该设备可实现对活动小鼠中约 0.5 平方毫米区域的高速细胞成像。这种能力允许在九个小脑微区中的超过 200 个浦肯野神经元中同时跟踪 Ca2+ 尖峰。在小鼠运动过程中,单个微区表现出大规模的同步 Ca2+ 尖峰。这是一种介观神经动力学,先前研究大脑其他长度尺度的技术无法捕捉到这一动力学。总的来说,集成显微镜是一种具有变革潜力的技术,它可以将显微镜分发给许多动物,并实现各种用途,例如便携式诊断或用于大规模筛选的显微镜阵列。