Bobadilla-Fazzini Roberto A, Poblete-Castro Ignacio
Biosystems Engineering Laboratory, Department of Chemical Engineering, Universidad de Santiago de Chile (USACH), Santiago, Chile.
Front Microbiol. 2021 Oct 22;12:761997. doi: 10.3389/fmicb.2021.761997. eCollection 2021.
Biofilm formation within the process of bioleaching of copper sulfides is a relevant aspect of iron- and sulfur-oxidizing acidophilic microorganisms as it represents their lifestyle in the actual heap/dump mining industry. Here, we used biofilm flow cell chambers to establish laminar regimes and compare them with turbulent conditions to evaluate biofilm formation and mineralogic dynamics through QEMSCAN and SEM-EDS during bioleaching of primary copper sulfide minerals at 30°C. We found that laminar regimes triggered the buildup of biofilm using spp. and (inoculation ratio 3:1) at a cell concentration of 10 cells/g mineral on bornite (CuFeS) but not for chalcopyrite (CuFeS). Conversely, biofilm did not occur on any of the tested minerals under turbulent conditions. Inoculating the bacterial community with ferric iron (Fe) under shaking conditions resulted in rapid copper recovery from bornite, leaching 40% of the Cu content after 10 days of cultivation. The addition of ferrous iron (Fe) instead promoted Cu recovery of 30% at day 48, clearly delaying the leaching process. More efficiently, the biofilm-forming laminar regime almost doubled the leached copper amount (54%) after 32 days. In-depth inspection of the microbiologic dynamics showed that bacteria developing biofilm on the surface of bornite corresponded mainly to , while spp. were detected in planktonic form, highlighting the role of biofilm buildup as a means for the bioleaching of primary sulfides. We finally propose a mechanism for bornite bioleaching during biofilm formation where sulfur regeneration to sulfuric acid by the sulfur-oxidizing microorganisms is crucial to prevent iron precipitation for efficient copper recovery.
在硫化铜生物浸出过程中,生物膜的形成是铁和硫氧化嗜酸微生物的一个重要方面,因为它代表了它们在实际堆浸/废石堆采矿工业中的生存方式。在此,我们使用生物膜流动池腔室建立层流状态,并将其与湍流条件进行比较,以通过QEMSCAN和SEM-EDS评估在30°C下原生硫化铜矿物生物浸出过程中的生物膜形成和矿物学动态。我们发现,层流状态在斑铜矿(CuFeS)上以10个细胞/克矿物的细胞浓度引发了使用 spp. 和 (接种比例3:1)形成生物膜,但在黄铜矿(CuFeS)上则没有。相反,在湍流条件下,任何测试矿物上都未形成生物膜。在振荡条件下用三价铁(Fe)接种细菌群落导致从斑铜矿中快速回收铜,培养10天后浸出了40%的铜含量。而添加二价铁(Fe)则在第48天促进了30%的铜回收,明显延迟了浸出过程。更有效的是,形成生物膜的层流状态在32天后使浸出的铜量几乎增加了一倍(54%)。对微生物动态的深入检查表明,在斑铜矿表面形成生物膜的细菌主要对应于 ,而 spp. 以浮游形式被检测到,突出了生物膜形成作为原生硫化物生物浸出手段的作用。我们最终提出了生物膜形成过程中斑铜矿生物浸出的机制,其中硫氧化微生物将硫再生为硫酸对于防止铁沉淀以实现高效铜回收至关重要。