Qin Jing, Deng Geng, Ning Jing, Yuan Ao, Shen Yu
National Institution of Allergy and Infectious Diseases.
Wells Fargo.
Ann Appl Stat. 2021 Sep;15(3):1291-1307. doi: 10.1214/21-aoas1446.
For certain subtypes of breast cancer, study findings show that their level of estrogen receptor expression is associated with their risk of cancer death, and also suggests a non-linear effect on the hazard of death. A flexible form of the proportional hazards model, (∣ ) = () exp( )(), is desirable to facilitate a rich class of covariate effect on a survival outcome to provide meaningful insight, where the functional form of () is not specified except for its shape. Prior biologic knowledge on the shape of the underlying distribution of the covariate effect in regression models can be used to enhance statistical inference. Despite recent progress, major challenges remain for the semiparametric shape-restricted inference due to lack of practical and efficient computational algorithms to accomplish non-convex optimization. We propose an alternative algorithm to maximize the full log-likelihood with two sets of parameters iteratively under monotone constraints. The first set consists of the non-parametric estimation of the monotone-restricted function (), while the second set includes estimating the baseline hazard function and other covariate coefficients. The iterative algorithm in conjunction with the pool-adjacent-violators algorithm makes the computation efficient and practical. The Jackknife resampling effectively reduces the estimator bias, when sample size is small. Simulations show that the proposed method can accurately capture the underlying shape of (), and outperforms the estimators when () in the Cox model is mis-specified. We apply the method to model the effect of estrogen receptor on breast cancer patients' survival.
对于某些乳腺癌亚型,研究结果表明,它们的雌激素受体表达水平与癌症死亡风险相关,并且还表明对死亡风险存在非线性影响。比例风险模型的一种灵活形式,即(h(t|x)=h_0(t)\exp(\beta x)),有助于对生存结果产生丰富的协变量效应,从而提供有意义的见解,其中(h_0(t))的函数形式除了其形状外未作具体规定。回归模型中协变量效应潜在分布形状的先验生物学知识可用于增强统计推断。尽管最近取得了进展,但由于缺乏实用且高效的计算算法来完成非凸优化,半参数形状受限推断仍面临重大挑战。我们提出了一种替代算法,在单调约束下迭代地最大化两组参数的完整对数似然。第一组由单调受限函数(h_0(t))的非参数估计组成,而第二组包括估计基线风险函数和其他协变量系数。结合池相邻违规者算法的迭代算法使计算高效且实用。当样本量较小时,刀切重采样有效地降低了估计偏差。模拟表明,所提出的方法可以准确地捕捉(h_0(t))的潜在形状,并且在Cox模型中(h_0(t))被错误指定时优于估计器。我们应用该方法对雌激素受体对乳腺癌患者生存的影响进行建模。