Suppr超能文献

形状受限的Cox回归模型下雌激素受体表达对乳腺癌患者生存情况的影响

ESTROGEN RECEPTOR EXPRESSION ON BREAST CANCER PATIENTS' SURVIVAL UNDER SHAPE RESTRICTED COX REGRESSION MODEL.

作者信息

Qin Jing, Deng Geng, Ning Jing, Yuan Ao, Shen Yu

机构信息

National Institution of Allergy and Infectious Diseases.

Wells Fargo.

出版信息

Ann Appl Stat. 2021 Sep;15(3):1291-1307. doi: 10.1214/21-aoas1446.

Abstract

For certain subtypes of breast cancer, study findings show that their level of estrogen receptor expression is associated with their risk of cancer death, and also suggests a non-linear effect on the hazard of death. A flexible form of the proportional hazards model, (∣ ) = () exp( )(), is desirable to facilitate a rich class of covariate effect on a survival outcome to provide meaningful insight, where the functional form of () is not specified except for its shape. Prior biologic knowledge on the shape of the underlying distribution of the covariate effect in regression models can be used to enhance statistical inference. Despite recent progress, major challenges remain for the semiparametric shape-restricted inference due to lack of practical and efficient computational algorithms to accomplish non-convex optimization. We propose an alternative algorithm to maximize the full log-likelihood with two sets of parameters iteratively under monotone constraints. The first set consists of the non-parametric estimation of the monotone-restricted function (), while the second set includes estimating the baseline hazard function and other covariate coefficients. The iterative algorithm in conjunction with the pool-adjacent-violators algorithm makes the computation efficient and practical. The Jackknife resampling effectively reduces the estimator bias, when sample size is small. Simulations show that the proposed method can accurately capture the underlying shape of (), and outperforms the estimators when () in the Cox model is mis-specified. We apply the method to model the effect of estrogen receptor on breast cancer patients' survival.

摘要

对于某些乳腺癌亚型,研究结果表明,它们的雌激素受体表达水平与癌症死亡风险相关,并且还表明对死亡风险存在非线性影响。比例风险模型的一种灵活形式,即(h(t|x)=h_0(t)\exp(\beta x)),有助于对生存结果产生丰富的协变量效应,从而提供有意义的见解,其中(h_0(t))的函数形式除了其形状外未作具体规定。回归模型中协变量效应潜在分布形状的先验生物学知识可用于增强统计推断。尽管最近取得了进展,但由于缺乏实用且高效的计算算法来完成非凸优化,半参数形状受限推断仍面临重大挑战。我们提出了一种替代算法,在单调约束下迭代地最大化两组参数的完整对数似然。第一组由单调受限函数(h_0(t))的非参数估计组成,而第二组包括估计基线风险函数和其他协变量系数。结合池相邻违规者算法的迭代算法使计算高效且实用。当样本量较小时,刀切重采样有效地降低了估计偏差。模拟表明,所提出的方法可以准确地捕捉(h_0(t))的潜在形状,并且在Cox模型中(h_0(t))被错误指定时优于估计器。我们应用该方法对雌激素受体对乳腺癌患者生存的影响进行建模。

相似文献

2
Partial likelihood estimation of isotonic proportional hazards models.
Biometrika. 2018 Mar 1;105(1):133-148. doi: 10.1093/biomet/asx064. Epub 2017 Dec 5.
3
Shape restricted additive hazards models: Monotone, unimodal, and U-shape hazard functions.
Stat Med. 2024 Apr 30;43(9):1671-1687. doi: 10.1002/sim.10040. Epub 2024 Feb 14.
4
Maximum Likelihood Estimation for Shape-restricted Single-index Hazard Models.
J Data Sci. 2023 Oct;21(4):681-695. doi: 10.6339/22-jds1061. Epub 2022 Nov 4.
5
Global Partial Likelihood for Nonparametric Proportional Hazards Models.
J Am Stat Assoc. 2010 Jan 1;105(490):750-760. doi: 10.1198/jasa.2010.tm08636. Epub 2012 Jan 1.
6
Semiparametric isotonic regression modelling and estimation for group testing data.
Can J Stat. 2021 Sep;49(3):659-677. doi: 10.1002/cjs.11581. Epub 2020 Oct 28.
8
A pairwise likelihood augmented Cox estimator for left-truncated data.
Biometrics. 2018 Mar;74(1):100-108. doi: 10.1111/biom.12746. Epub 2017 Aug 29.
9
Efficient semiparametric estimation of short-term and long-term hazard ratios with right-censored data.
Biometrics. 2013 Dec;69(4):840-9. doi: 10.1111/biom.12097. Epub 2013 Nov 4.
10
Use of empirical likelihood to calibrate auxiliary information in partly linear monotone regression models.
Stat Med. 2014 May 10;33(10):1713-22. doi: 10.1002/sim.6057. Epub 2013 Dec 9.

本文引用的文献

1
Partial likelihood estimation of isotonic proportional hazards models.
Biometrika. 2018 Mar 1;105(1):133-148. doi: 10.1093/biomet/asx064. Epub 2017 Dec 5.
2
GLOBAL RATES OF CONVERGENCE OF THE MLES OF LOG-CONCAVE AND -CONCAVE DENSITIES.
Ann Stat. 2016;44(3):954-981. doi: 10.1214/15-AOS1394. Epub 2016 Apr 11.
3
Revisiting the definition of estrogen receptor positivity in HER2-negative primary breast cancer.
Ann Oncol. 2017 Oct 1;28(10):2420-2428. doi: 10.1093/annonc/mdx397.
4
Flexible Bayesian survival modeling with semiparametric time-dependent and shape-restricted covariate effects.
Bayesian Anal. 2016 Jun;11(2):381-402. doi: 10.1214/15-BA954. Epub 2015 May 14.
5
Which threshold for ER positivity? a retrospective study based on 9639 patients.
Ann Oncol. 2014 May;25(5):1004-11. doi: 10.1093/annonc/mdu053. Epub 2014 Feb 20.
6
Global Partial Likelihood for Nonparametric Proportional Hazards Models.
J Am Stat Assoc. 2010 Jan 1;105(490):750-760. doi: 10.1198/jasa.2010.tm08636. Epub 2012 Jan 1.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验