Murray Thomas A, Hobbs Brian P, Sargent Daniel J, Carlin Bradley P
Department of Biostatistics, The University of Texas MD Anderson Cancer Center.
Mayo Clinic Cancer Center.
Bayesian Anal. 2016 Jun;11(2):381-402. doi: 10.1214/15-BA954. Epub 2015 May 14.
Presently, there are few options with available software to perform a fully Bayesian analysis of time-to-event data wherein the hazard is estimated semi- or non-parametrically. One option is the piecewise exponential model, which requires an often unrealistic assumption that the hazard is piecewise constant over time. The primary aim of this paper is to construct a tractable semiparametric alternative to the piecewise exponential model that assumes the hazard is continuous, and to provide modifiable, user-friendly software that allows the use of these methods in a variety of settings. To accomplish this aim, we use a novel model formulation for the log-hazard based on a low-rank thin plate linear spline that readily facilitates adjustment for covariates with time-dependent and proportional hazards effects, possibly subject to shape restrictions. We investigate the performance of our model choices via simulation. We then analyze colorectal cancer data from a clinical trial comparing the effectiveness of two novel treatment regimes relative to the standard of care for overall survival. We estimate a time-dependent hazard ratio for each novel regime relative to the standard of care while adjusting for the effect of aspartate transaminase, a biomarker of liver function, that is subject to a non-decreasing shape restriction.
目前,用于对事件发生时间数据进行全贝叶斯分析的可用软件选项很少,其中风险是通过半参数或非参数方法估计的。一种选择是分段指数模型,它需要一个通常不切实际的假设,即风险随时间分段恒定。本文的主要目的是构建一种易于处理的半参数替代方案,以替代假设风险连续的分段指数模型,并提供可修改的、用户友好的软件,以便在各种环境中使用这些方法。为了实现这一目标,我们基于低秩薄板线性样条为对数风险使用了一种新颖的模型公式,该公式便于对具有时间依赖性和比例风险效应的协变量进行调整,可能会受到形状限制。我们通过模拟研究了我们模型选择的性能。然后,我们分析了一项临床试验中的结直肠癌数据,该试验比较了两种新治疗方案相对于总体生存护理标准的有效性。我们在调整肝功能生物标志物天冬氨酸转氨酶的影响时,估计了每种新方案相对于护理标准的时间依赖性风险比,天冬氨酸转氨酶受到非递减形状限制。