Suppr超能文献

具有半参数时间依赖性和形状受限协变量效应的灵活贝叶斯生存建模。

Flexible Bayesian survival modeling with semiparametric time-dependent and shape-restricted covariate effects.

作者信息

Murray Thomas A, Hobbs Brian P, Sargent Daniel J, Carlin Bradley P

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center.

Mayo Clinic Cancer Center.

出版信息

Bayesian Anal. 2016 Jun;11(2):381-402. doi: 10.1214/15-BA954. Epub 2015 May 14.

Abstract

Presently, there are few options with available software to perform a fully Bayesian analysis of time-to-event data wherein the hazard is estimated semi- or non-parametrically. One option is the piecewise exponential model, which requires an often unrealistic assumption that the hazard is piecewise constant over time. The primary aim of this paper is to construct a tractable semiparametric alternative to the piecewise exponential model that assumes the hazard is continuous, and to provide modifiable, user-friendly software that allows the use of these methods in a variety of settings. To accomplish this aim, we use a novel model formulation for the log-hazard based on a low-rank thin plate linear spline that readily facilitates adjustment for covariates with time-dependent and proportional hazards effects, possibly subject to shape restrictions. We investigate the performance of our model choices via simulation. We then analyze colorectal cancer data from a clinical trial comparing the effectiveness of two novel treatment regimes relative to the standard of care for overall survival. We estimate a time-dependent hazard ratio for each novel regime relative to the standard of care while adjusting for the effect of aspartate transaminase, a biomarker of liver function, that is subject to a non-decreasing shape restriction.

摘要

目前,用于对事件发生时间数据进行全贝叶斯分析的可用软件选项很少,其中风险是通过半参数或非参数方法估计的。一种选择是分段指数模型,它需要一个通常不切实际的假设,即风险随时间分段恒定。本文的主要目的是构建一种易于处理的半参数替代方案,以替代假设风险连续的分段指数模型,并提供可修改的、用户友好的软件,以便在各种环境中使用这些方法。为了实现这一目标,我们基于低秩薄板线性样条为对数风险使用了一种新颖的模型公式,该公式便于对具有时间依赖性和比例风险效应的协变量进行调整,可能会受到形状限制。我们通过模拟研究了我们模型选择的性能。然后,我们分析了一项临床试验中的结直肠癌数据,该试验比较了两种新治疗方案相对于总体生存护理标准的有效性。我们在调整肝功能生物标志物天冬氨酸转氨酶的影响时,估计了每种新方案相对于护理标准的时间依赖性风险比,天冬氨酸转氨酶受到非递减形状限制。

相似文献

1
Flexible Bayesian survival modeling with semiparametric time-dependent and shape-restricted covariate effects.
Bayesian Anal. 2016 Jun;11(2):381-402. doi: 10.1214/15-BA954. Epub 2015 May 14.
4
Comparing Smoothing Techniques for Fitting the Nonlinear Effect of Covariate in Cox Models.
Acta Inform Med. 2016 Feb;24(1):38-41. doi: 10.5455/aim.2016.24.38-41. Epub 2016 Feb 2.
5
Bayesian analysis for partly linear Cox model with measurement error and time-varying covariate effect.
Stat Med. 2022 Oct 15;41(23):4666-4681. doi: 10.1002/sim.9531. Epub 2022 Jul 28.
6
Bayesian regularization for flexible baseline hazard functions in Cox survival models.
Biom J. 2021 Jan;63(1):7-26. doi: 10.1002/bimj.201900211. Epub 2020 Sep 3.
8
Flexible Bayesian excess hazard models using low-rank thin plate splines.
Stat Methods Med Res. 2020 Jun;29(6):1700-1714. doi: 10.1177/0962280219874094. Epub 2019 Sep 10.
10
Flexible parametric joint modelling of longitudinal and survival data.
Stat Med. 2012 Dec 30;31(30):4456-71. doi: 10.1002/sim.5644. Epub 2012 Oct 4.

引用本文的文献

2
Bayesian survival analysis for early detection of treatment effects in phase 3 clinical trials.
Contemp Clin Trials Commun. 2021 Jan 9;21:100709. doi: 10.1016/j.conctc.2021.100709. eCollection 2021 Mar.

本文引用的文献

1
A Bayesian proportional hazards model for general interval-censored data.
Lifetime Data Anal. 2015 Jul;21(3):470-90. doi: 10.1007/s10985-014-9305-9. Epub 2014 Aug 7.
2
Bayesian Nonparametric Inference - Why and How.
Bayesian Anal. 2013;8(2). doi: 10.1214/13-BA811.
3
The BUGS project: Evolution, critique and future directions.
Stat Med. 2009 Nov 10;28(25):3049-67. doi: 10.1002/sim.3680.
5
Generating survival times to simulate Cox proportional hazards models.
Stat Med. 2005 Jun 15;24(11):1713-23. doi: 10.1002/sim.2059.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验