Suppr超能文献

在单调风险下使用左截断和区间删失数据估计生存曲线。

Estimating survival curves with left-truncated and interval-censored data under monotone hazards.

作者信息

Pan W, Chappell R

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis 55455-0378, USA.

出版信息

Biometrics. 1998 Sep;54(3):1053-60.

PMID:9750251
Abstract

We show that the nonparametric maximum likelihood estimator (NPMLE) of a survival function may severely underestimate the survival probabilities at very early times for left-truncated and interval-censored data. As an alternative, we propose to compute the (nonparametric) MLE under a nondecreasing hazard assumption, the monotone MLE, by a gradient projection algorithm when the assumption holds. The projection step is accomplished via an isotonic regression algorithm, the pool-adjacent-violators algorithm. This gradient projection algorithm is computationally efficient and converges globally. Monte Carlo simulations show superior performance of the monotone MLE over that of the NPMLE in terms of either bias or variance, even for large samples. The methodology is illustrated with the application to the Wisconsin Epidemiological Study of Diabetic Retinopathy data to estimate the probability of incidence of retinopathy.

摘要

我们表明,对于左截断和区间删失数据,生存函数的非参数极大似然估计器(NPMLE)在非常早期的时间点可能会严重低估生存概率。作为一种替代方法,我们建议在危险率非递减假设下通过梯度投影算法计算(非参数)极大似然估计(MLE),即单调MLE,前提是该假设成立。投影步骤通过保序回归算法,即合并相邻违规者算法来完成。这种梯度投影算法计算效率高且全局收敛。蒙特卡罗模拟表明,即使对于大样本,单调MLE在偏差或方差方面都优于NPMLE。通过将该方法应用于威斯康星糖尿病视网膜病变流行病学研究数据来估计视网膜病变发病率的概率,对该方法进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验