Suppr超能文献

转录因子组合对消化系统癌的预后和预测价值

Prognostic and Predictive Value of Transcription Factors Panel for Digestive System Carcinoma.

作者信息

Fang Guoxu, Fan Jianhui, Ding Zongren, Li Rong, Lin Kongying, Fu Jun, Huang Qizhen, Zeng Yongyi, Liu Jingfeng

机构信息

Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.

The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China.

出版信息

Front Oncol. 2021 Oct 21;11:670129. doi: 10.3389/fonc.2021.670129. eCollection 2021.

Abstract

PURPOSE

Digestive system carcinoma is one of the most devastating diseases worldwide. Lack of valid clinicopathological parameters as prognostic factors needs more accurate and effective biomarkers for high-confidence prognosis that guide decision-making for optimal treatment of digestive system carcinoma. The aim of the present study was to establish a novel model to improve prognosis prediction of digestive system carcinoma, with a particular interest in transcription factors (TFs).

MATERIALS AND METHODS

A TF-related prognosis model of digestive system carcinoma with data from TCGA database successively were processed by univariate and multivariate Cox regression analyses. Then, for evaluating the prognostic prediction value of the model, ROC curve and survival analysis were performed by external data from GEO database. Furthermore, we verified the expression of TFs expression by qPCR in digestive system carcinoma tissue. Finally, we constructed a TF clinical characteristics nomogram to furtherly predict digestive system carcinoma patient survival probability with TCGA database.

RESULTS

By Cox regression analysis, a panel of 17 TFs (NFIC, YBX2, ZBTB47, ZNF367, CREB3L3, HEYL, FOXD1, TIGD1, SNAI1, HSF4, CENPA, ETS2, FOXM1, ETV4, MYBL2, FOXQ1, ZNF589) was identified to present with powerful predictive performance for overall survival of digestive system carcinoma patients based on TCGA database. A nomogram that integrates TFs was established, allowing efficient prediction of survival probabilities and displaying higher clinical utility.

CONCLUSION

The 17-TF panel is an independent prognostic factor for digestive system carcinoma, and 17 TFs based nomogram might provide implication an effective approach for digestive system carcinoma patient management and treatment.

摘要

目的

消化系统癌是全球最具毁灭性的疾病之一。缺乏有效的临床病理参数作为预后因素,需要更准确有效的生物标志物用于高可信度预后评估,以指导消化系统癌的最佳治疗决策。本研究的目的是建立一种新型模型以改善消化系统癌的预后预测,尤其关注转录因子(TFs)。

材料与方法

利用来自TCGA数据库的数据,通过单因素和多因素Cox回归分析,先后构建了消化系统癌的TF相关预后模型。然后,为评估该模型的预后预测价值,利用来自GEO数据库的外部数据进行ROC曲线分析和生存分析。此外,我们通过qPCR验证了消化系统癌组织中TFs的表达。最后,我们利用TCGA数据库构建了TF临床特征列线图,以进一步预测消化系统癌患者的生存概率。

结果

通过Cox回归分析,基于TCGA数据库确定了一组17个TFs(NFIC、YBX2、ZBTB47、ZNF367、CREB3L3、HEYL、FOXD1、TIGD1、SNAI1、HSF4、CENPA、ETS2、FOXM1、ETV4、MYBL2、FOXQ1、ZNF589),它们对消化系统癌患者的总生存具有强大的预测性能。建立了一个整合TFs的列线图,可有效预测生存概率并显示出更高的临床实用性。

结论

17个TFs组成的模型是消化系统癌的独立预后因素,基于17个TFs的列线图可能为消化系统癌患者的管理和治疗提供一种有效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a308/8566925/994921cc0c15/fonc-11-670129-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验