Suppr超能文献

用于预测三阴性乳腺癌新辅助化疗后无病生存期的列线图

A Nomogram to Predict Disease-Free Survival Following Neoadjuvant Chemotherapy for Triple Negative Breast Cancer.

作者信息

Zhu Meizhen, Liang Chenlu, Zhang Fanrong, Zhu Liang, Chen Daobao

机构信息

Department of Breast Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.

Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.

出版信息

Front Oncol. 2021 Oct 21;11:690336. doi: 10.3389/fonc.2021.690336. eCollection 2021.

Abstract

BACKGROUND

Neoadjuvant chemotherapy (NACT) is considered a standard treatment strategy for locally advanced triple negative breast cancer (TNBC). TNBC patients who achieve a pathologic complete response (pCR) are predicted to have a better prognosis while unfavorable chemo-sensitivity is still associated with a higher risk of disease relapse. The objective of this study was to construct a nomogram to predict disease-free survival (DFS) for TNBC patients following NACT.

METHODS

A total of 165 TNBC patients who underwent standard NACT and surgery were retrospectively reviewed, and data on their clinicopathological factors before and after NACT were collected. Independent prognostic factors for DFS were identified by Cox regression based on lower Akaike information criteria (AIC) and Bayesian information criterion (BIC). A nomogram to predict the 2-year and 5-year DFS following NACT for TNBC was constructed based on training cohort (n = 132) and validated by a validation cohort (n = 33).

RESULTS

Either limited or full pCR (breast-only pCR, node-only pCR, or both-pCR) indicated significantly improved DFS and overall survival (OS) (p < 0.001). Lager residual tumor size (hazard ratio [HR] 1.175, p = 0.011) and the presence of lymphatic vessel invasion (LVI) (HR 3.168, p = 0.001) were identified as independent predictors of disease relapse in the training cohort. Five variables, including age, primary tumor size, histological grade, residual tumor size, and LVI were used to establish the nomogram. The C-index of the nomogram was 0.815, and calibration curves showed an acceptable consistency between the actual and nomogram-predicted 2-year and 5-year DFS. The proposed nomogram demonstrated superior predictive performance compared with Residual Cancer Burden (RCB) classification and the 8th American Joint Committee on Cancer Post Neoadjuvant Therapy Classification (AJCC ypTNM) staging system (area under the curve [AUC] for 2-year DFS: 0.870 0.758 0.711, respectively; AUC for 5-year DFS: 0.794 0.731 0.702, respectively) in the validation cohort.

CONCLUSIONS

The nomogram proposed in our study enabled to quantify the risk of disease relapse and demonstrated superior predictive performance than a survival predict instrument. It was an easy-to-use tool for clinicians to guide individualized surveillance of TNBC patients following standard NACT.

摘要

背景

新辅助化疗(NACT)被认为是局部晚期三阴性乳腺癌(TNBC)的标准治疗策略。实现病理完全缓解(pCR)的TNBC患者预计预后较好,而化疗敏感性不佳仍与疾病复发风险较高相关。本研究的目的是构建一个列线图,以预测TNBC患者接受NACT后的无病生存期(DFS)。

方法

回顾性分析了165例接受标准NACT和手术的TNBC患者,并收集了他们NACT前后的临床病理因素数据。基于较低的赤池信息准则(AIC)和贝叶斯信息准则(BIC),通过Cox回归确定DFS的独立预后因素。基于训练队列(n = 132)构建了一个预测TNBC患者NACT后2年和5年DFS的列线图,并通过验证队列(n = 33)进行验证。

结果

部分或完全pCR(仅乳腺pCR、仅淋巴结pCR或两者均为pCR)均表明DFS和总生存期(OS)显著改善(p < 0.001)。较大的残余肿瘤大小(风险比[HR] 1.175,p = 0.011)和淋巴管浸润(LVI)(HR 3.168,p = 0.001)被确定为训练队列中疾病复发的独立预测因素。使用年龄、原发肿瘤大小、组织学分级、残余肿瘤大小和LVI这五个变量建立列线图。列线图的C指数为0.815,校准曲线显示实际和列线图预测的2年和5年DFS之间具有可接受的一致性。在验证队列中,与残余癌负担(RCB)分类和美国癌症联合委员会第8版新辅助治疗后分类(AJCC ypTNM)分期系统相比,所提出的列线图显示出更好的预测性能(2年DFS的曲线下面积[AUC]分别为:0.870、0.758、0.711;5年DFS的AUC分别为:0.794、0.731、0.702)。

结论

我们研究中提出的列线图能够量化疾病复发风险,并且显示出比生存预测工具更好的预测性能。它是临床医生在标准NACT后指导TNBC患者进行个体化监测的一个易于使用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6951/8566908/185526d28018/fonc-11-690336-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验