Suppr超能文献

一种用于监测非转移性三阴性乳腺癌实时预后的新型条件生存列线图。

A novel conditional survival nomogram for monitoring real-time prognosis of non-metastatic triple-negative breast cancer.

机构信息

Department of Radiation Oncology, Weifang People's Hospital, Weifang, China.

出版信息

Front Endocrinol (Lausanne). 2023 Feb 24;14:1119105. doi: 10.3389/fendo.2023.1119105. eCollection 2023.

Abstract

BACKGROUND

Conditional survival (CS) is defined as the possibility of further survival after patients have survived for several years since diagnosis. This may be highly valuable for real-time prognostic monitoring, especially when considering individualized factors. Such prediction tools were lacking for non-metastatic triple-negative breast cancer (TNBC). Therefore, this study estimated CS and developed a novel CS-nomogram for real-time prediction of 10-year survival.

METHODS

We recruited 32,836 non-metastatic TNBC patients from the Surveillance, Epidemiology, and End Results (SEER) database (2010-2019), who were divided into training and validation groups according to a 7:3 ratio. The Kaplan-Meier method estimated overall survival (OS), and the CS was calculated using the formula CS(y|x) =OS(y+x)/OS(x), where OS(x) and OS(y+x) were the survival of x- and (x+y)-years, respectively. The least absolute shrinkage and selection operator (LASSO) regression identified predictors to develop the CS-nomogram.

RESULTS

CS analysis reported gradual improvement in real-time survival over time since diagnosis, with 10-year OS updated annually from an initial 69.9% to 72.8%, 78.1%, 83.0%, 87.0%, 90.3%, 93.0%, 95.0%, 97.0%, and 98.9% (after 1-9 years of survival, respectively). The LASSO regression identified age, marriage, race, T status, N status, chemotherapy, surgery, and radiotherapy as predictors of CS-nomogram development. This model had a satisfactory predictive performance with a stable 10-year time-dependent area under the curves (AUCs) between 0.75 and 0.86.

CONCLUSIONS

Survival of non-metastatic TNBC survivors improved dynamically and non-linearly with survival time. The study developed a CS-nomogram that provided more accurate prognostic data than traditional nomograms, aiding clinical decision-making and reducing patient anxiety.

摘要

背景

条件生存(CS)被定义为患者在诊断后存活数年之后继续生存的可能性。这对于实时预后监测可能非常有价值,特别是在考虑个体化因素时。对于非转移性三阴性乳腺癌(TNBC),缺乏这样的预测工具。因此,本研究估计了 CS,并开发了一种新的 CS 列线图,用于实时预测 10 年生存率。

方法

我们从监测、流行病学和最终结果(SEER)数据库(2010-2019 年)中招募了 32836 例非转移性 TNBC 患者,根据 7:3 的比例将其分为训练组和验证组。Kaplan-Meier 法估计总生存率(OS),CS 通过公式 CS(y|x) =OS(y+x)/OS(x) 计算,其中 OS(x) 和 OS(y+x) 分别为 x 年和(x+y)年的生存率。最小绝对收缩和选择算子(LASSO)回归确定了预测因素,以开发 CS 列线图。

结果

CS 分析报告了自诊断以来实时生存率的逐渐改善,10 年 OS 每年更新,从初始的 69.9%更新至 72.8%、78.1%、83.0%、87.0%、90.3%、93.0%、95.0%、97.0%和 98.9%(分别在生存 1-9 年后)。LASSO 回归确定了年龄、婚姻、种族、T 分期、N 分期、化疗、手术和放疗是 CS 列线图开发的预测因素。该模型具有令人满意的预测性能,10 年时间依赖性曲线下面积(AUC)稳定在 0.75 至 0.86 之间。

结论

非转移性 TNBC 幸存者的生存随着生存时间动态且非线性地改善。本研究开发了 CS 列线图,提供了比传统列线图更准确的预后数据,有助于临床决策,并减少患者焦虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77f3/9998975/f5d20d186a6e/fendo-14-1119105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验