Aguion Philipp Innig, Marchanka Alexander
Institute for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ), Leibniz University Hannover, Hanover, Germany.
Front Mol Biosci. 2021 Oct 20;8:743181. doi: 10.3389/fmolb.2021.743181. eCollection 2021.
Magic angle spinning (MAS) solid-state NMR (ssNMR) is an established tool that can be applied to non-soluble or non-crystalline biomolecules of any size or complexity. The ssNMR method advances rapidly due to technical improvements and the development of advanced isotope labeling schemes. While ssNMR has shown significant progress in structural studies of proteins, the number of RNA studies remains limited due to ssNMR methodology that is still underdeveloped. Resonance assignment is the most critical and limiting step in the structure determination protocol that defines the feasibility of NMR studies. In this review, we summarize the recent progress in RNA resonance assignment methods and approaches for secondary structure determination by ssNMR. We critically discuss advantages and limitations of conventional C- and N-detected experiments and novel H-detected methods, identify optimal regimes for RNA studies by ssNMR, and provide our view on future ssNMR studies of RNA in large RNP complexes.
魔角旋转(MAS)固态核磁共振(ssNMR)是一种成熟的工具,可应用于任何大小或复杂度的不溶性或非晶态生物分子。由于技术改进和先进同位素标记方案的发展,ssNMR方法发展迅速。虽然ssNMR在蛋白质结构研究方面已取得显著进展,但由于ssNMR方法仍不够成熟,RNA研究的数量仍然有限。共振归属是结构测定方案中最关键且具有限制性的步骤,它决定了核磁共振研究的可行性。在本综述中,我们总结了RNA共振归属方法以及通过ssNMR确定二级结构的方法的最新进展。我们批判性地讨论了传统的碳和氮检测实验以及新型氢检测方法的优缺点,确定了通过ssNMR进行RNA研究的最佳条件,并对未来在大型核糖核蛋白复合物中进行RNA的ssNMR研究发表了我们的看法。