Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.
Prog Nucl Magn Reson Spectrosc. 2018 Dec;109:51-78. doi: 10.1016/j.pnmrs.2018.06.002. Epub 2018 Jun 18.
In the cellular environment, biomolecules assemble in large complexes which can act as molecular machines. Determining the structure of intact assemblies can reveal conformations and inter-molecular interactions that are only present in the context of the full assembly. Solid-state NMR (ssNMR) spectroscopy is a technique suitable for the study of samples with high molecular weight that allows the atomic structure determination of such large protein assemblies under nearly physiological conditions. This review provides a practical guide for the first steps of studying biological supra-molecular assemblies using ssNMR. The production of isotope-labeled samples is achievable via several means, which include recombinant expression, cell-free protein synthesis, extraction of assemblies directly from cells, or even the study of assemblies in whole cells in situ. Specialized isotope labeling schemes greatly facilitate the assignment of chemical shifts and the collection of structural data. Advanced strategies such as mixed, diluted, or segmental subunit labeling offer the possibility to study inter-molecular interfaces. Detailed and practical considerations are presented with respect to first setting up magic-angle spinning (MAS) ssNMR experiments, including the selection of the ssNMR rotor, different methods to best transfer the sample and prepare the rotor, as well as common and robust procedures for the calibration of the instrument. Diagnostic spectra to evaluate the resolution and sensitivity of the sample are presented. Possible improvements that can reduce sample heterogeneity and improve the quality of ssNMR spectra are reviewed.
在细胞环境中,生物分子组装成大型复合物,这些复合物可以作为分子机器。确定完整组装体的结构可以揭示仅在完整组装体的背景下才存在的构象和分子间相互作用。固态 NMR(ssNMR)光谱学是一种适用于研究具有高分子量样品的技术,它允许在近乎生理条件下确定此类大型蛋白质组装体的原子结构。
本综述为使用 ssNMR 研究生物超分子组装体的最初步骤提供了实用指南。可以通过多种方法生产同位素标记的样品,包括重组表达、无细胞蛋白质合成、直接从细胞中提取组装体,甚至原位研究完整细胞中的组装体。特殊的同位素标记方案极大地促进了化学位移的分配和结构数据的收集。混合、稀释或分段亚基标记等先进策略提供了研究分子间界面的可能性。
本文详细介绍了如何首次设置魔角旋转(MAS)ssNMR 实验,包括 ssNMR 转子的选择、将样品和转子最佳转移的不同方法,以及仪器校准的常见且稳健的程序。还介绍了用于评估样品分辨率和灵敏度的诊断谱。还综述了可能改善样品异质性并提高 ssNMR 谱质量的改进方法。