Suppr超能文献

导电地质聚合物作为微生物燃料电池的低成本电极材料

Conductive Geopolymers as Low-Cost Electrode Materials for Microbial Fuel Cells.

作者信息

Zhang Shifan, Schuster Jürgen, Frühauf-Wyllie Hanna, Arat Serkan, Yadav Sandeep, Schneider Jörg J, Stöckl Markus, Ukrainczyk Neven, Koenders Eddie

机构信息

Department of Materials in Civil Engineering at the Technical University of Darmstadt, Franziska-Braun-Straße 3, 64287 Darmstadt, Germany.

Department of Electrochemistry, DECHEMA-Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt a. M., Germany.

出版信息

ACS Omega. 2021 Oct 19;6(43):28859-28870. doi: 10.1021/acsomega.1c03805. eCollection 2021 Nov 2.

Abstract

Geopolymer (GP) inorganic binders have a superior acid resistance compared to conventional cement (, Portland cement, PC) binders, have better microbial compatibility, and are suitable for introducing electrically conductive additives to improve electron and ion transfer properties. In this study, GP-graphite (GPG) composites and PC-graphite (PCG) composites with a graphite content of 1-10 vol % were prepared and characterized. The electrical conductivity percolation threshold of the GPG and PCG composites was around 7 and 8 vol %, respectively. GPG and PCG composites with a graphite content of 8 to 10 vol % were selected as anode electrodes for the electrochemical analysis in two-chamber polarized microbial fuel cells (MFCs). Graphite electrodes were used as the positive control reference material. was used as a biofilm-forming and electroactive model organism for MFC experiments. Compared to the conventional graphite anodes, the anode-respiring biofilms resulted in equal current production on GPG composite anodes, whereas the PCG composites showed a very poor performance. The largest mean value of the measured current densities of a GPG composite used as anodes in MFCs was 380.4 μA cm with a standard deviation of 129.5 μA cm. Overall, the best results were obtained with electrodes having a relatively low Ohmic resistance, that is, GPG composites and graphite. The very first approach employing sustainable GPs as a low-cost electrode binder material in an MFC showed promising results with the potential to greatly reduce the production costs of MFCs, which would also increase the feasibility of MFC large-scale applications.

摘要

与传统水泥(波特兰水泥,PC)基粘结剂相比,地质聚合物(GP)无机粘结剂具有优异的耐酸性,具有更好的微生物相容性,并且适合引入导电添加剂以改善电子和离子传输性能。在本研究中,制备并表征了石墨含量为1-10体积%的GP-石墨(GPG)复合材料和PC-石墨(PCG)复合材料。GPG和PCG复合材料的电导率渗流阈值分别约为7体积%和8体积%。选择石墨含量为8至10体积%的GPG和PCG复合材料作为两室极化微生物燃料电池(MFC)电化学分析的阳极电极。石墨电极用作阳性对照参考材料。 用作MFC实验的生物膜形成和电活性模型生物。与传统石墨阳极相比,阳极呼吸生物膜在GPG复合阳极上产生的电流相等,而PCG复合材料表现出非常差的性能。用作MFC阳极的GPG复合材料的测量电流密度的最大平均值为380.4μA/cm,标准偏差为129.5μA/cm。总体而言,使用具有相对较低欧姆电阻的电极,即GPG复合材料和石墨,可获得最佳结果。在MFC中首次采用可持续的GP作为低成本电极粘结剂材料的方法显示出有希望的结果,有可能大大降低MFC的生产成本,这也将增加MFC大规模应用的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/726e/8567353/7f468aaaaaf1/ao1c03805_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验