文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微生物燃料电池中改性石墨阳极上生成的发电生物膜的细菌群落结构。

Bacterial community structure of electrogenic biofilm developed on modified graphite anode in microbial fuel cell.

机构信息

Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.

Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.

出版信息

Sci Rep. 2023 Jan 23;13(1):1255. doi: 10.1038/s41598-023-27795-x.


DOI:10.1038/s41598-023-27795-x
PMID:36690637
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9871009/
Abstract

Formation of electrogenic microbial biofilm on the electrode is critical for harvesting electrical power from wastewater in microbial biofuel cells (MFCs). Although the knowledge of bacterial community structures in the biofilm is vital for the rational design of MFC electrodes, an in-depth study on the subject is still awaiting. Herein, we attempt to address this issue by creating electrogenic biofilm on modified graphite anodes assembled in an air-cathode MFC. The modification was performed with reduced graphene oxide (rGO), polyaniline (PANI), and carbon nanotube (CNTs) separately. To accelerate the growth of the biofilm, soybean-potato composite (plant) powder was blended with these conductive materials during the fabrication of the anodes. The MFC fabricated with PANI-based anode delivered the current density of 324.2 mA cm, followed by CNTs (248.75 mA cm), rGO (193 mA cm), and blank (without coating) (151 mA cm) graphite electrodes. Likewise, the PANI-based anode supported a robust biofilm growth containing maximum bacterial cell densities with diverse shapes and sizes of the cells and broad metabolic functionality. The alpha diversity of the biofilm developed over the anode coated with PANI was the loftiest operational taxonomic unit (2058 OUT) and Shannon index (7.56), as disclosed from the high-throughput 16S rRNA sequence analysis. Further, within these taxonomic units, exoelectrogenic phyla comprising Proteobacteria, Firmicutes, and Bacteroidetes were maximum with their corresponding level (%) 45.5, 36.2, and 9.8. The relative abundance of Gammaproteobacteria, Clostridia, and Bacilli at the class level, while Pseudomonas, Clostridium, Enterococcus, and Bifidobacterium at the genus level were comparatively higher in the PANI-based anode.

摘要

在微生物燃料电池(MFC)中,从废水中获取电能的关键是在电极上形成发电微生物生物膜。虽然生物膜中细菌群落结构的知识对于 MFC 电极的合理设计至关重要,但对此主题的深入研究仍有待进行。在此,我们尝试通过在空气阴极 MFC 中组装的改性石墨阳极上形成发电生物膜来解决这个问题。改性是通过分别用还原氧化石墨烯(rGO)、聚苯胺(PANI)和碳纳米管(CNTs)进行的。为了加速生物膜的生长,在制造阳极时将大豆-马铃薯复合物(植物)粉末与这些导电材料混合。基于 PANI 的阳极制成的 MFC 提供了 324.2 mA cm 的电流密度,其次是 CNTs(248.75 mA cm)、rGO(193 mA cm)和空白(无涂层)石墨电极(151 mA cm)。同样,基于 PANI 的阳极支持着强大的生物膜生长,其中包含最大的细菌细胞密度,细胞形状和大小多样,代谢功能广泛。高通量 16S rRNA 序列分析显示,在涂有 PANI 的阳极上形成的生物膜的 alpha 多样性最高(2058 OUT)和 Shannon 指数(7.56)。此外,在这些分类单元中,外电子菌门包括 Proteobacteria、Firmicutes 和 Bacteroidetes,其相应水平(%)分别为 45.5、36.2 和 9.8。在属水平上,Pseudomonas、Clostridium、Enterococcus 和 Bifidobacterium 的相对丰度较高,而在类水平上,Gammaproteobacteria、Clostridia 和 Bacilli 的相对丰度较高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/09c219e37344/41598_2023_27795_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/76920a0c815c/41598_2023_27795_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/c5853a6d47a1/41598_2023_27795_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/2da5bb32a2ea/41598_2023_27795_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/499a8d483b34/41598_2023_27795_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/585ea500971e/41598_2023_27795_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/bb08d8e9da5e/41598_2023_27795_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/09c219e37344/41598_2023_27795_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/76920a0c815c/41598_2023_27795_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/c5853a6d47a1/41598_2023_27795_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/2da5bb32a2ea/41598_2023_27795_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/499a8d483b34/41598_2023_27795_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/585ea500971e/41598_2023_27795_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/bb08d8e9da5e/41598_2023_27795_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b69/9871009/09c219e37344/41598_2023_27795_Fig7_HTML.jpg

相似文献

[1]
Bacterial community structure of electrogenic biofilm developed on modified graphite anode in microbial fuel cell.

Sci Rep. 2023-1-23

[2]
Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates.

BMC Microbiol. 2017-6-29

[3]
Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell.

Chemosphere. 2018-11-30

[4]
Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

J Biosci Bioeng. 2017-3

[5]
Anode macrostructures influence electricity generation in microbial fuel cells for wastewater treatment.

J Biosci Bioeng. 2017-1

[6]
Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.

Appl Microbiol Biotechnol. 2009-7

[7]
In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

Biosens Bioelectron. 2015-4-24

[8]
Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing.

Appl Microbiol Biotechnol. 2010-6-8

[9]
Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation.

Bioresour Technol. 2019-3-19

[10]
Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells.

Water Res. 2013-10-20

引用本文的文献

[1]
Polypyrrole-Modified Used in Microbial Fuel Cell.

Biosensors (Basel). 2025-8-9

[2]
Characterizations of sulfate-reducing bacteria biofilm formed on N80 carbon steel in artificial shale gas field produced water.

Sci Rep. 2025-7-1

[3]
Harnessing the power of microbial fuel cells as pioneering green technology: advancing sustainable energy and wastewater treatment through innovative nanotechnology.

Bioprocess Biosyst Eng. 2025-3

[4]
Effect of Gold Nanoparticles in Microbial Fuel Cells Based on Polypyrrole-Modified .

Biosensors (Basel). 2024-11-26

[5]
Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices.

Biosensors (Basel). 2024-6-8

[6]
Batch and semi-continuous treatment of cassava wastewater using microbial fuel cells and metataxonomic analysis.

Bioprocess Biosyst Eng. 2024-7

[7]
Novel Conductive Polymer Composite PEDOT:PSS/Bovine Serum Albumin for Microbial Bioelectrochemical Devices.

Sensors (Basel). 2024-1-30

[8]
Investigation of microbial fuel cell performance based on the nickel thin film modified electrodes.

Sci Rep. 2023-11-25

[9]
Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells.

Polymers (Basel). 2023-9-15

[10]
Generation of green electricity from sludge using photo-stimulated bacterial consortium as a sustainable technology.

Microb Cell Fact. 2023-9-15

本文引用的文献

[1]
Sludge Derived Carbon Modified Anode in Microbial Fuel Cell for Performance Improvement and Microbial Community Dynamics.

Membranes (Basel). 2022-1-20

[2]
Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications.

Bioresour Technol. 2022-3

[3]
Bioelectrochemical systems-based metal recovery: Resource, conservation and recycling of metallic industrial effluents.

Environ Res. 2022-3

[4]
A review on three-dimensional graphene: Synthesis, electronic and biotechnology applications-The Unknown Riddles.

IET Nanobiotechnol. 2021-6

[5]
Enrichment of Clostridia enhances Geobacter population and electron harvesting in a complex electroactive biofilm.

Bioelectrochemistry. 2022-2

[6]
Silver nanoparticles boost charge-extraction efficiency in microbial fuel cells.

Science. 2021-9-17

[7]
Anodic and cathodic biofilms coupled with electricity generation in single-chamber microbial fuel cell using activated sludge.

Bioprocess Biosyst Eng. 2021-12

[8]
Inhibition of AHL-mediated quorum sensing to control biofilm thickness in microbial fuel cell by using Rhodococcus sp. BH4.

Chemosphere. 2021-12

[9]
An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production.

Sci Total Environ. 2020-9-21

[10]
Application of advanced anodes in microbial fuel cells for power generation: A review.

Chemosphere. 2020-1-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索