Water Pollution Research Department, Environmental Research and Climate Change Institute, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
Sci Rep. 2023 Jan 23;13(1):1255. doi: 10.1038/s41598-023-27795-x.
Formation of electrogenic microbial biofilm on the electrode is critical for harvesting electrical power from wastewater in microbial biofuel cells (MFCs). Although the knowledge of bacterial community structures in the biofilm is vital for the rational design of MFC electrodes, an in-depth study on the subject is still awaiting. Herein, we attempt to address this issue by creating electrogenic biofilm on modified graphite anodes assembled in an air-cathode MFC. The modification was performed with reduced graphene oxide (rGO), polyaniline (PANI), and carbon nanotube (CNTs) separately. To accelerate the growth of the biofilm, soybean-potato composite (plant) powder was blended with these conductive materials during the fabrication of the anodes. The MFC fabricated with PANI-based anode delivered the current density of 324.2 mA cm, followed by CNTs (248.75 mA cm), rGO (193 mA cm), and blank (without coating) (151 mA cm) graphite electrodes. Likewise, the PANI-based anode supported a robust biofilm growth containing maximum bacterial cell densities with diverse shapes and sizes of the cells and broad metabolic functionality. The alpha diversity of the biofilm developed over the anode coated with PANI was the loftiest operational taxonomic unit (2058 OUT) and Shannon index (7.56), as disclosed from the high-throughput 16S rRNA sequence analysis. Further, within these taxonomic units, exoelectrogenic phyla comprising Proteobacteria, Firmicutes, and Bacteroidetes were maximum with their corresponding level (%) 45.5, 36.2, and 9.8. The relative abundance of Gammaproteobacteria, Clostridia, and Bacilli at the class level, while Pseudomonas, Clostridium, Enterococcus, and Bifidobacterium at the genus level were comparatively higher in the PANI-based anode.
在微生物燃料电池(MFC)中,从废水中获取电能的关键是在电极上形成发电微生物生物膜。虽然生物膜中细菌群落结构的知识对于 MFC 电极的合理设计至关重要,但对此主题的深入研究仍有待进行。在此,我们尝试通过在空气阴极 MFC 中组装的改性石墨阳极上形成发电生物膜来解决这个问题。改性是通过分别用还原氧化石墨烯(rGO)、聚苯胺(PANI)和碳纳米管(CNTs)进行的。为了加速生物膜的生长,在制造阳极时将大豆-马铃薯复合物(植物)粉末与这些导电材料混合。基于 PANI 的阳极制成的 MFC 提供了 324.2 mA cm 的电流密度,其次是 CNTs(248.75 mA cm)、rGO(193 mA cm)和空白(无涂层)石墨电极(151 mA cm)。同样,基于 PANI 的阳极支持着强大的生物膜生长,其中包含最大的细菌细胞密度,细胞形状和大小多样,代谢功能广泛。高通量 16S rRNA 序列分析显示,在涂有 PANI 的阳极上形成的生物膜的 alpha 多样性最高(2058 OUT)和 Shannon 指数(7.56)。此外,在这些分类单元中,外电子菌门包括 Proteobacteria、Firmicutes 和 Bacteroidetes,其相应水平(%)分别为 45.5、36.2 和 9.8。在属水平上,Pseudomonas、Clostridium、Enterococcus 和 Bifidobacterium 的相对丰度较高,而在类水平上,Gammaproteobacteria、Clostridia 和 Bacilli 的相对丰度较高。
Appl Microbiol Biotechnol. 2009-7
Biosens Bioelectron. 2015-4-24
Appl Microbiol Biotechnol. 2010-6-8
Biosensors (Basel). 2025-8-9
Biosensors (Basel). 2024-11-26
Biosensors (Basel). 2024-6-8
Bioprocess Biosyst Eng. 2024-7
Polymers (Basel). 2023-9-15
Bioresour Technol. 2022-3
Sci Total Environ. 2020-9-21
Chemosphere. 2020-1-21