IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9503-9520. doi: 10.1109/TPAMI.2021.3125931. Epub 2022 Nov 7.
Deep learning models have been shown to be vulnerable to adversarial attacks. Adversarial attacks are imperceptible perturbations added to an image such that the deep learning model misclassifies the image with a high confidence. Existing adversarial defenses validate their performance using only the classification accuracy. However, classification accuracy by itself is not a reliable metric to determine if the resulting image is "adversarial-free". This is a foundational problem for online image recognition applications where the ground-truth of the incoming image is not known and hence we cannot compute the accuracy of the classifier or validate if the image is "adversarial-free" or not. This paper proposes a novel privacy preserving framework for defending Black box classifiers from adversarial attacks using an ensemble of iterative adversarial image purifiers whose performance is continuously validated in a loop using Bayesian uncertainties. The proposed approach can convert a single-step black box adversarial defense into an iterative defense and proposes three novel privacy preserving Knowledge Distillation (KD) approaches that use prior meta-information from various datasets to mimic the performance of the Black box classifier. Additionally, this paper proves the existence of an optimal distribution for the purified images that can reach a theoretical lower bound, beyond which the image can no longer be purified. Experimental results on six public benchmark datasets namely: 1) Fashion-MNIST, 2) CIFAR-10, 3) GTSRB, 4) MIO-TCD, 5) Tiny-ImageNet, and 6) MS-Celeb show that the proposed approach can consistently detect adversarial examples and purify or reject them against a variety of adversarial attacks.
深度学习模型已被证明易受对抗攻击的影响。对抗攻击是指在图像中添加不可察觉的扰动,从而使深度学习模型以高置信度错误分类图像。现有的对抗防御仅使用分类准确率来验证其性能。然而,分类准确率本身并不是确定生成的图像是否“无对抗”的可靠指标。这是在线图像识别应用中的一个基本问题,因为传入图像的真实情况未知,因此我们无法计算分类器的准确率,也无法验证图像是否“无对抗”。本文提出了一种新颖的隐私保护框架,使用迭代对抗图像净化器的集合来保护黑盒分类器免受对抗攻击,其性能在循环中使用贝叶斯不确定性不断验证。所提出的方法可以将单步黑盒对抗防御转换为迭代防御,并提出了三种新颖的隐私保护知识蒸馏 (KD) 方法,这些方法使用来自各种数据集的先验元信息来模拟黑盒分类器的性能。此外,本文证明了纯化图像存在最优分布,可以达到理论下限,超过该下限,图像就无法再被纯化。在六个公共基准数据集(即:1)Fashion-MNIST、2)CIFAR-10、3)GTSRB、4)MIO-TCD、5)Tiny-ImageNet 和 6)MS-Celeb 上的实验结果表明,所提出的方法可以一致地检测对抗样本,并对各种对抗攻击进行纯化或拒绝。