Suppr超能文献

双流:通过流场和基于归一化流的模型生成不可察觉的对抗样本。

DualFlow: Generating imperceptible adversarial examples by flow field and normalize flow-based model.

作者信息

Liu Renyang, Jin Xin, Hu Dongting, Zhang Jinhong, Wang Yuanyu, Zhang Jin, Zhou Wei

机构信息

School of Information Science and Engineering, Yunnan University, Kunming, China.

Engineering Research Center of Cyberspace, Yunnan University, Kunming, China.

出版信息

Front Neurorobot. 2023 Feb 9;17:1129720. doi: 10.3389/fnbot.2023.1129720. eCollection 2023.

Abstract

Recent adversarial attack research reveals the vulnerability of learning-based deep learning models (DNN) against well-designed perturbations. However, most existing attack methods have inherent limitations in image quality as they rely on a relatively loose noise budget, i.e., limit the perturbations by -norm. Resulting that the perturbations generated by these methods can be easily detected by defense mechanisms and are easily perceptible to the human visual system (HVS). To circumvent the former problem, we propose a novel framework, called , to craft adversarial examples by disturbing the image's latent representations with spatial transform techniques. In this way, we are able to fool classifiers with human imperceptible adversarial examples and step forward in exploring the existing DNN's fragility. For imperceptibility, we introduce the flow-based model and spatial transform strategy to ensure the calculated adversarial examples are perceptually distinguishable from the original clean images. Extensive experiments on three computer vision benchmark datasets (CIFAR-10, CIFAR-100 and ImageNet) indicate that our method can yield superior attack performance in most situations. Additionally, the visualization results and quantitative performance (in terms of six different metrics) show that the proposed method can generate more imperceptible adversarial examples than the existing imperceptible attack methods.

摘要

最近的对抗攻击研究揭示了基于学习的深度学习模型(DNN)在面对精心设计的扰动时的脆弱性。然而,大多数现有攻击方法在图像质量方面存在固有局限性,因为它们依赖于相对宽松的噪声预算,即通过 -范数限制扰动。结果是,这些方法生成的扰动很容易被防御机制检测到,并且很容易被人类视觉系统(HVS)感知到。为了规避前一个问题,我们提出了一个名为 的新颖框架,通过空间变换技术干扰图像的潜在表示来生成对抗样本。通过这种方式,我们能够用人类不可察觉的对抗样本欺骗分类器,并在探索现有DNN的脆弱性方面向前迈进。为了实现不可察觉性,我们引入了基于流的模型和空间变换策略,以确保计算出的对抗样本在感知上与原始干净图像区分开来。在三个计算机视觉基准数据集(CIFAR-10、CIFAR-100和ImageNet)上进行的大量实验表明,我们的方法在大多数情况下都能产生卓越的攻击性能。此外,可视化结果和定量性能(根据六种不同指标)表明,与现有的不可察觉攻击方法相比,该方法能够生成更不可察觉的对抗样本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33aa/9947527/e381872fa00c/fnbot-17-1129720-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验