Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States.
BrightSpec, Inc., 770 Harris St., Suite 104b, Charlottesville, Virginia 22903, United States.
Anal Chem. 2021 Nov 23;93(46):15525-15533. doi: 10.1021/acs.analchem.1c03710. Epub 2021 Nov 8.
A next-generation gas chromatograph-molecular rotational resonance (MRR) spectrometer (GC-MRR) with instrumental improvements and higher sensitivity is described. MRR serves as a structural information-rich detector for GC with extremely narrow linewidths and capabilities surpassing H nuclear magnetic resonance/Fourier transform infrared spectroscopy/mass spectrometry (MS) while offering unparalleled specificity in regard to a molecule's three-dimensional structure. With a Fabry-Pérot cavity and a supersonic jet incorporated into a GC-MRR, dramatic improvements in sensitivity for molecules up to 244 Da were achieved in the microwave region compared to the only prior work, which demonstrated the GC-MRR idea for the first time with millimeter waves. The supersonic jet cools the analytes to ∼2 K, resulting in a limited number of molecular rotational and vibrational levels and enabling us to obtain stronger GC-MRR signals. This has allowed the limits of detection of the GC-MRR to be comparable to a GC thermal conductivity detector with an optimized choice of gases. The performance of this GC-MRR system is reported for a range of molecules with permanent dipole moments, including alcohols, nitrogen heterocyclics, halogenated compounds, dioxins, and nitro compounds in the molecular mass range of 46-244 Da. The lowest amount of any substance yet detected by MRR in terms of mass is reported in this work. A theoretically unexpected finding is reported for the first time about the effect of the GC carrier gas (He, Ne, and N) on the sensitivity of the analysis in the presence of the gas driving the supersonic jet (He, Ne, and N) in the GC-MRR. Finally, the idea of total molecule monitoring in the GC-MRR analogous to selected ion monitoring in GC-MS is illustrated. Structural isomers and isotopologues of bromobutanes and bromonitrobenzenes are used to demonstrate this concept.
一种具有仪器改进和更高灵敏度的下一代气相色谱-分子转动共振(MRR)光谱仪(GC-MRR)被描述。MRR 作为一种结构信息丰富的 GC 检测器,具有极窄的线宽和超越 H 核磁共振/傅里叶变换红外光谱/质谱(MS)的能力,同时在分子的三维结构方面提供无与伦比的特异性。通过在 GC-MRR 中结合 Fabry-Pérot 腔和超声射流,与仅有的以前的工作相比,在微波区域中,对高达 244 Da 的分子的灵敏度得到了显著提高,该工作首次展示了使用毫米波的 GC-MRR 理念。超声射流将分析物冷却到 ∼2 K,导致分子的转动和振动能级数量有限,使我们能够获得更强的 GC-MRR 信号。这使得 GC-MRR 的检测限能够与优化选择气体的 GC 热导检测器相媲美。报道了该 GC-MRR 系统在一系列具有永久偶极矩的分子中的性能,包括醇、氮杂环化合物、卤代化合物、二恶英和硝基化合物,分子量范围为 46-244 Da。报告了迄今为止通过 MRR 以质量计检测到的任何物质的最低量。首次报告了关于 GC 载气(He、Ne 和 N)对在 GC-MRR 中存在驱动超声射流的气体(He、Ne 和 N)的情况下分析灵敏度的影响的理论上意想不到的发现。最后,说明了在 GC-MRR 中类似于 GC-MS 中选择离子监测的总分子监测的想法。使用溴丁烷和溴代硝基苯的结构异构体和同位素类似物来演示该概念。