Kahng Soojin, Kim Jung Hyeun
Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, South Korea.
Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, South Korea.
Chemosphere. 2022 Mar;291(Pt 2):132800. doi: 10.1016/j.chemosphere.2021.132800. Epub 2021 Nov 5.
The photoelectrochemical (PEC) method has a potential to harvest solar energy for sustainable energy and degrade contaminants. Herein, we fabricated cauliflower-like SnO and porous Mo-doped BiVO (SnO/Mo:BiVO) photoelectrodes by a sol-gel spin-coating method for better PEC performance and higher degradability of tetracycline hydrochloride (TC-HCl). The SnO layer plays a crucial role in attaining a smooth and uniform surface of the photoanodes for blocking holes to defect trap sites and preventing charge recombination with improved light utilization. Mo dopants serve as nuclei for the crystallization of BiVO and for making charge-adjustable porous structures for PEC performance. Thus, the content-optimized SnO/Mo:BiVO photoanode film presents the highest photocurrent density of 0.59 mA cm at 1.23 V of 82.1% TC-HCl decomposition efficiency within 120 min at a rate constant of 1.49 × 10 min, providing a promising method for green environmental applications.
光电化学(PEC)方法具有收集太阳能以实现可持续能源利用和降解污染物的潜力。在此,我们通过溶胶-凝胶旋涂法制备了菜花状的SnO和多孔Mo掺杂BiVO(SnO/Mo:BiVO)光电极,以实现更好的PEC性能和更高的盐酸四环素(TC-HCl)降解能力。SnO层对于获得光阳极光滑均匀的表面起着关键作用,可将空穴阻挡到缺陷陷阱位点,并通过提高光利用率来防止电荷复合。Mo掺杂剂作为BiVO结晶的晶核,并用于制造用于PEC性能的电荷可调多孔结构。因此,含量优化的SnO/Mo:BiVO光阳极薄膜在1.23 V时呈现出最高光电流密度0.59 mA cm,在120分钟内实现了82.1%的TC-HCl分解效率,速率常数为1.49×10 min,为绿色环境应用提供了一种有前景的方法。