Suppr超能文献

双修饰 BiVO4 光阳极协同增强光电化学水分解。

Dual modification of BiVO photoanode for synergistically boosting photoelectrochemical water splitting.

机构信息

Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, PR China; School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, PR China.

Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China; Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, PR China.

出版信息

J Colloid Interface Sci. 2023 Sep 15;646:238-244. doi: 10.1016/j.jcis.2023.04.173. Epub 2023 May 5.

Abstract

Bismuth vanadate (BiVO) is a promising nanomaterial for photoelectrochemical (PEC) water oxidation. However, the serious charge recombination and sluggish water oxidation kinetics limit its performance. Herein, an integrated photoanode was successfully constructed by modifying BiVO (BV) with InO (In) layer and further decorating amorphous FeNi hydroxides (FeNi). The BV/In/FeNi photoanode exhibited a remarkable photocurrent density of 4.0 mA cm at 1.23 V, which is approximately 3.6 times larger than that of pure BV. And the water oxidation reaction kinetics has an over 200% increased. This improvement was mainly because the formation of BV/In heterojunction inhibited charge recombination, and the decoration of cocatalyst FeNi facilitated the water oxidation reaction kinetics and accelerated hole transfer to electrolyte. Our work provides another possible route to develop high-efficiency photoanodes for practical applications in solar conversion.

摘要

五氧化二铋 (BiVO) 是一种很有前途的光电化学 (PEC) 水氧化纳米材料。然而,严重的电荷复合和缓慢的水氧化动力学限制了其性能。在此,通过用 InO (In) 层修饰 BiVO (BV) 并进一步修饰非晶态 FeNi 氢氧化物 (FeNi),成功构建了集成光阳极。BV/In/FeNi 光阳极在 1.23 V 时表现出显著的光电流密度为 4.0 mA cm,大约是纯 BV 的 3.6 倍。并且水氧化反应动力学提高了 200%以上。这种改进主要是因为形成了 BV/In 异质结抑制了电荷复合,并且共催化剂 FeNi 的修饰促进了水氧化反应动力学并加速了空穴向电解质的转移。我们的工作为开发用于太阳能转换的高效光阳极提供了另一种可能的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验