Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Feb 15;267(Pt 2):120538. doi: 10.1016/j.saa.2021.120538. Epub 2021 Oct 28.
We investigated the potential carrier of milk beta-casein (β-CN) and its interactions with 5-fluorouracil (5-FU) and iron oxide nanoparticles (FeO NPs). We used different spectroscopic methods of fluorescence, UV-Visble, circular dichroism (CD), synchronous fluorescence, zeta potential assay, and computational studies to clarify the protein interaction with 5-FU and FeO NPs. The fluorescence data indicated both FeO NPs and 5-FU could quench the intrinsic fluorescence of β-CN. Fluorescence measurements showed that the single interaction of β-CN with 5-FU or FeO NPs was static, while reacted β-CN with both 5-FU and FeO NPs simultaneously showed a dynamic quenching. Synchronous fluorescence data in both tests revealed that the tryptophan (Trp) residue of β-CN had a dominant role in quenching and the polarity of its microenvironment more than tyrosine (Tyr) increased in interaction with 5-FU. All the binding sites and thermodynamic parameters were obtained at 25, 37, and 42 °C. The analysis of thermodynamic parameters and Job's plot techniques pointed to that both of these complexes with the 1:1 M ratio were exothermic (ΔH°<0) driven with the van der Waals and H-bonding interactions (in agreement with the docking results). The CD spectra in the region of far-UV and thermal denaturation study indicated minor changes in the secondary structure of β-CN in the presence of various concentrations of FeO NPs and 5-FU. Also, from the molecular dynamics (MD) analysis, as a result, the protein structure was stable during 100 ns. The outcomes highlighted that β-CN protein could form a great bind with 5-FU and FeO NPs ligands (supporting the zeta potential assay results) by independent binding sites. These results would be helpful insight to construct a potential magnetic nanocarrier β-CN base for 5-FU drug delivery.
我们研究了牛奶β-乳球蛋白(β-CN)的潜在载体及其与 5-氟尿嘧啶(5-FU)和氧化铁纳米粒子(FeO NPs)的相互作用。我们使用不同的荧光、紫外可见、圆二色性(CD)、同步荧光、Zeta 电位测定和计算研究方法来阐明蛋白质与 5-FU 和 FeO NPs 的相互作用。荧光数据表明,FeO NPs 和 5-FU 都可以猝灭β-CN 的固有荧光。荧光测量表明,β-CN 与 5-FU 或 FeO NPs 的单一相互作用是静态的,而同时与 5-FU 和 FeO NPs 反应的β-CN 则表现出动态猝灭。在这两个测试中,同步荧光数据表明,β-CN 的色氨酸(Trp)残基在猝灭中起主导作用,其微环境的极性比酪氨酸(Tyr)在与 5-FU 相互作用时增加。在 25、37 和 42°C 时获得了所有结合位点和热力学参数。热力学参数分析和 Job 图技术表明,这两种复合物的 1:1 M 比例都是放热(ΔH°<0),由范德华和氢键相互作用驱动(与对接结果一致)。远紫外区域的 CD 光谱和热变性研究表明,在不同浓度的 FeO NPs 和 5-FU 存在下,β-CN 的二级结构发生了微小变化。此外,从分子动力学(MD)分析来看,在 100ns 内,蛋白质结构保持稳定。研究结果表明,β-CN 蛋白可以通过独立的结合位点与 5-FU 和 FeO NPs 配体形成很强的结合(支持 Zeta 电位测定结果)。这些结果将有助于构建一种基于β-CN 蛋白的潜在磁性纳米载体,用于 5-FU 药物输送。