Laboratório de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO 76812-245, Brazil.
Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia (UNIR), Porto Velho, RO 76801-059, Brazil.
Exp Biol Med (Maywood). 2021 Nov;246(21):2332-2337. doi: 10.1177/15353702211021348.
The coronavirus disease COVID-19 has been the cause of millions of deaths worldwide. Among the SARS-CoV-2 proteins, the non-structural protein 1 (NSP1) has great importance during the virus infection process and is present in both alpha and beta-CoVs. Therefore, monitoring of NSP1 polymorphisms is crucial in order to understand their role during infection and virus-induced pathogenicity. Herein, we analyzed how mutations detected in the circulating SARS-CoV-2 in the population of the city of Manaus, Amazonas state, Brazil could modify the tertiary structure of the NSP1 protein. Three mutations were detected in the SARS-CoV-2 NSP1 gene: deletion of the amino acids KSF from positions 141 to 143 (delKSF), SARS-CoV-2, lineage B.1.195; and two substitutions, R29H and R43C, SARS-CoV-2 lineage B.1.1.28 and B.1.1.33, respectively. The delKSF was found in 47 samples, whereas R29H and R43C were found in two samples, one for each mutation. The NSP1 structures carrying the mutations R43C and R29H on the N-terminal portion (e.g. residues 10 to 127) showed minor backbone divergence compared to the Wuhan model. However, the NSP1 C-terminal region (residues 145 to 180) was severely affected in the delKSF and R29H mutants. The intermediate variable region (residues 144 to 148) leads to changes in the C-terminal region, particularly in the delKSF structure. New investigations must be carried out to analyze how these changes affect NSP1 activity during the infection. Our results reinforce the need for continuous genomic surveillance of SARS-CoV-2 to better understand virus evolution and assess the potential impact of the viral mutations on the approved vaccines and future therapies.
新型冠状病毒病(COVID-19)已在全球范围内导致数百万人死亡。在 SARS-CoV-2 蛋白中,非结构蛋白 1(NSP1)在病毒感染过程中非常重要,存在于α和β冠状病毒中。因此,监测 NSP1 多态性对于了解其在感染过程中和病毒诱导的致病性中的作用至关重要。在此,我们分析了在巴西亚马逊州玛瑙斯市的人群中循环的 SARS-CoV-2 中检测到的突变如何改变 NSP1 蛋白的三级结构。在 SARS-CoV-2 NSP1 基因中检测到三个突变:位置 141 到 143 的氨基酸 KSF 的缺失(delKSF),SARS-CoV-2,谱系 B.1.195;以及两个取代,R29H 和 R43C,分别为 SARS-CoV-2 谱系 B.1.1.28 和 B.1.1.33。在 47 个样本中发现了 delKSF,而 R29H 和 R43C 则在两个样本中发现,每个突变一个。与武汉模型相比,携带突变 R43C 和 R29H 的 NSP1 结构在 N 端部分(例如残基 10 到 127)的骨架略有分歧。然而,NSP1 C 端区域(残基 145 到 180)在 delKSF 和 R29H 突变体中受到严重影响。中间可变区(残基 144 到 148)导致 C 端区域的变化,特别是在 delKSF 结构中。必须进行新的研究来分析这些变化如何影响感染过程中 NSP1 的活性。我们的结果加强了对 SARS-CoV-2 进行持续基因组监测的必要性,以更好地了解病毒的进化,并评估病毒突变对已批准疫苗和未来疗法的潜在影响。