Suppr超能文献

ADMET 预测器在早期发现药物代谢和药代动力学项目工作中的评估。

Evaluation of ADMET Predictor in Early Discovery Drug Metabolism and Pharmacokinetics Project Work.

机构信息

Research Institutes of Sweden, Södertälje, Sweden (A.-K.S.-S.); ADMEYT AB, Stenhamra, Sweden (Y.T.); and Medivir AB, Huddinge, Sweden (A.-K.S.-S., Y.T.)

Research Institutes of Sweden, Södertälje, Sweden (A.-K.S.-S.); ADMEYT AB, Stenhamra, Sweden (Y.T.); and Medivir AB, Huddinge, Sweden (A.-K.S.-S., Y.T.).

出版信息

Drug Metab Dispos. 2022 Feb;50(2):95-104. doi: 10.1124/dmd.121.000552. Epub 2021 Nov 8.

Abstract

A dataset consisting of measured values for LogD, solubility, metabolic stability in human liver microsomes (HLMs), and Caco-2 permeability was used to evaluate the prediction models for lipophilicity (S+LogD), water solubility (S+Sw_pH), metabolic stability in HLM (CYP_HLM_Clint), intestinal permeability (S+P), and P-glycoprotein (P-gp) substrate identification (P-gp substrate) in the software ADMET Predictor (AP) from Simulations Plus. The dataset consisted of a total of 4,794 compounds, with at least data from metabolic stability determinations in HLM, from multiple discovery projects at Medivir. Our evaluation shows that the global AP models can be used for categorization of high and low values based on predicted results for metabolic stability in HLM and intestinal permeability, and to give good predictions of LogD (R= 0.79), guiding the synthesis of new compounds and for prioritizing in vitro ADME experiments. The model seems to overpredict solubility for the Medivir compounds, however. We also used the in-house datasets to build local models for LogD, solubility, metabolic stability, and permeability by using artificial neural network (ANN) models in the optional Modeler module of AP. Predictions of the test sets were performed with both the global and the local models, and the R values for linear regression for predicted versus measured HLM in vitro intrinsic clearance (CL) based on logarithmic data were 0.72 for the in-house model and 0.53 for the AP model. The improved predictions with the local models are likely explained both by the specific chemical space of the Medivir dataset and laboratory-specific assay conditions for parameters that require biologic assay systems. SIGNIFICANCE STATEMENT: AP is useful early in projects for predicting and categorizing LogD, metabolic stability, and permeability, to guide the synthesis of new compounds, and for prioritizing in vitro ADME experiments. The building of local in-house prediction models with the optional AP Modeler Module can yield improved prediction success since these models are built on data from the same experimental setup and can also be based on compounds with similar structures.

摘要

一个包含 LogD 值、溶解度、人肝微粒体代谢稳定性 (HLMs) 和 Caco-2 通透性测量值的数据集被用于评估软件 ADMET Predictor (AP) 中用于预测脂溶性 (S+LogD)、水溶解度 (S+Sw_pH)、HLMs 中代谢稳定性 (CYP_HLM_Clint)、肠道通透性 (S+P) 和 P-糖蛋白 (P-gp) 底物识别 (P-gp 底物) 的预测模型。该数据集共包含 4794 种化合物,这些化合物均至少有来自 Medivir 多个发现项目的 HLMs 代谢稳定性测定数据。我们的评估表明,全局 AP 模型可用于根据 HLMs 代谢稳定性和肠道通透性的预测结果对高值和低值进行分类,并对 LogD 进行良好预测 (R=0.79),为新化合物的合成和体外 ADME 实验的优先级提供指导。然而,该模型似乎对 Medivir 化合物的溶解度预测过高。我们还使用内部数据集,通过在 AP 的可选 Modeler 模块中使用人工神经网络 (ANN) 模型,构建 LogD、溶解度、代谢稳定性和通透性的本地模型。使用全局和本地模型对测试集进行预测,基于对数数据,预测与实测 HLMs 体外内在清除率 (CL) 的线性回归的 R 值分别为 0.72(内部模型)和 0.53(AP 模型)。使用本地模型进行的改进预测,可能是由于 Medivir 数据集的特定化学空间和需要生物测定系统的参数的实验室特定测定条件所导致的。意义声明:AP 在项目早期可用于预测和分类 LogD、代谢稳定性和通透性,以指导新化合物的合成,并为体外 ADME 实验的优先级排序提供指导。使用可选的 AP Modeler 模块构建内部本地预测模型可以提高预测成功率,因为这些模型是基于相同实验设置的数据构建的,也可以基于具有相似结构的化合物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验