Suppr超能文献

金属有机框架中纳米受限液体电解质的锂动力学

Li Dynamics of Liquid Electrolytes Nanoconfined in Metal-Organic Frameworks.

作者信息

Farina Marco, Duff Benjamin B, Tealdi Cristina, Pugliese Andrea, Blanc Frédéric, Quartarone Eliana

机构信息

Department of Chemistry, University of Pavia, Via Taramelli 16, Pavia 27100, Italy.

Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 3ZD, U.K.

出版信息

ACS Appl Mater Interfaces. 2021 Nov 17;13(45):53986-53995. doi: 10.1021/acsami.1c16214. Epub 2021 Nov 9.

Abstract

Metal-organic frameworks (MOFs) are excellent platforms to design hybrid electrolytes for Li batteries with liquid-like transport and stability against lithium dendrites. We report on Li dynamics in quasi-solid electrolytes consisting in Mg-MOF-74 soaked with LiClO-propylene carbonate (PC) and LiClO-ethylene carbonate (EC)/dimethyl carbonate (DMC) solutions by combining studies of ion conductivity, nuclear magnetic resonance (NMR) characterization, and spin relaxometry. We investigate nanoconfinement of liquid inside MOFs to characterize the adsorption/solvation mechanism at the basis of Li migration in these materials. NMR supports that the liquid is nanoconfined in framework micropores, strongly interacting with their walls and that the nature of the solvent affects Li migration in MOFs. Contrary to the "free'' liquid electrolytes, faster ion dynamics and higher Li mobility take place in LiClO-PC electrolytes when nanoconfined in MOFs demonstrating superionic conductor behavior (conductivity σ > 0.1 mS cm, transport number > 0.7). Such properties, including a more stable Li electrodeposition, make MOF-hybrid electrolytes promising for high-power and safer lithium-ion batteries.

摘要

金属有机框架材料(MOFs)是设计用于锂电池的混合电解质的理想平台,这类混合电解质具有类似液体的传输特性以及对锂枝晶的稳定性。我们通过结合离子电导率研究、核磁共振(NMR)表征和自旋弛豫测量,报告了由浸泡在高氯酸锂-碳酸丙烯酯(PC)以及高氯酸锂-碳酸乙烯酯(EC)/碳酸二甲酯(DMC)溶液中的Mg-MOF-74组成的准固态电解质中的锂动力学。我们研究了MOF内部液体的纳米限域效应,以表征这些材料中锂迁移的吸附/溶剂化机制。NMR证实液体被纳米限域在框架微孔中,与孔壁强烈相互作用,并且溶剂的性质会影响锂在MOF中的迁移。与“自由”液体电解质相反,当纳米限域在MOF中时,高氯酸锂-PC电解质中会出现更快的离子动力学和更高的锂迁移率,表现出超离子导体行为(电导率σ>0.1 mS cm,迁移数>0.7)。这些特性,包括更稳定的锂电沉积,使得MOF混合电解质有望用于高功率且更安全的锂离子电池。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9386/8603352/7a0394a1c331/am1c16214_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验