Suppr超能文献

基于纳米浸润界面的金属有机框架电解质用于高能量密度固态锂电池。

A Metal-Organic-Framework-Based Electrolyte with Nanowetted Interfaces for High-Energy-Density Solid-State Lithium Battery.

机构信息

School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.

出版信息

Adv Mater. 2018 Jan;30(2). doi: 10.1002/adma.201704436. Epub 2017 Nov 27.

Abstract

Solid-state batteries (SSBs) are promising for safer energy storage, but their active loading and energy density have been limited by large interfacial impedance caused by the poor Li transport kinetics between the solid-state electrolyte and the electrode materials. To address the interfacial issue and achieve higher energy density, herein, a novel solid-like electrolyte (SLE) based on ionic-liquid-impregnated metal-organic framework nanocrystals (Li-IL@MOF) is reported, which demonstrates excellent electrochemical properties, including a high room-temperature ionic conductivity of 3.0 × 10 S cm , an improved Li transference number of 0.36, and good compatibilities against both Li metal and active electrodes with low interfacial resistances. The Li-IL@MOF SLE is further integrated into a rechargeable Li|LiFePO SSB with an unprecedented active loading of 25 mg cm , and the battery exhibits remarkable performance over a wide temperature range from -20 up to 150 °C. Besides the intrinsically high ionic conductivity of Li-IL@MOF, the unique interfacial contact between the SLE and the active electrodes owing to an interfacial wettability effect of the nanoconfined Li-IL guests, which creates an effective 3D Li conductive network throughout the whole battery, is considered to be the key factor for the excellent performance of the SSB.

摘要

固态电池(SSBs)在更安全的储能方面具有广阔的应用前景,但由于固态电解质与电极材料之间较差的 Li 输运动力学导致的大界面阻抗,其活性负载和能量密度受到限制。为了解决界面问题并实现更高的能量密度,本研究报道了一种基于离子液体浸渍金属有机骨架纳米晶体(Li-IL@MOF)的新型固态电解质(SLE),该固态电解质具有优异的电化学性能,包括室温下高达 3.0×10 S cm 的离子电导率、提高到 0.36 的 Li 迁移数以及对 Li 金属和活性电极的良好兼容性,界面电阻低。Li-IL@MOF SLE 进一步集成到可充电 Li|LiFePO 4 SSB 中,活性负载高达 25 mg cm ,电池在从-20 到 150°C 的宽温度范围内表现出优异的性能。除了 Li-IL@MOF 固有的高离子电导率外,SLE 与活性电极之间的独特界面接触,由于纳米限域 Li-IL 客体的界面润湿性效应,在整个电池中形成有效的 3D Li 导电网络,被认为是 SSB 优异性能的关键因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验