Suppr超能文献

生物材料图案化调控神经干细胞的命运和行为:生物学与材料科学的界面

Biomaterials patterning regulates neural stem cells fate and behavior: The interface of biology and material science.

作者信息

Niari Shabnam Asghari, Rahbarghazi Reza, Geranmayeh Mohammad Hossein, Karimipour Mohammad

机构信息

Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.

出版信息

J Biomed Mater Res A. 2022 Mar;110(3):725-737. doi: 10.1002/jbm.a.37321. Epub 2021 Nov 9.

Abstract

The combination of nanotechnology and stem cell biology is one of the most promising advances in the field of regenerative medicine. This novel combination has widely been utilized in vitro settings in an attempt to develop efficient therapeutic strategies to overcome the limited capacity of the central nervous system (CNS) in replacing degenerating neural cells with functionally normal cells after the onset of acute and chronic neurological disorders. Importantly, biomaterials, not only, enhance the endogenous CNS neurogenesis and plasticity, but also, could provide a desirable supportive microenvironment to harness the full potential of the in vitro expanded neural stem cells (NSCs) for regenerative purposes. Here, first, we discuss how the physical and biochemical properties of biomaterials, such as their stiffness and elasticity, could influence the behavior of NSCs. Then, since the NSCs niche or microenvironment is of fundamental importance in controlling the dynamic destiny of NSCs such as their quiescent and proliferative states, topographical effects of surface diversity in biomaterials, that is, the micro-and nano-patterned surfaces will be discussed in detail. Finally, the influence of biomaterials as artificial microenvironments on the behavior of NSCs through the specific mechanotransduction signaling pathway mediated by focal adhesion formation will be reviewed.

摘要

纳米技术与干细胞生物学的结合是再生医学领域最具前景的进展之一。这种新颖的结合已在体外环境中广泛应用,旨在开发有效的治疗策略,以克服中枢神经系统(CNS)在急性和慢性神经疾病发作后用功能正常的细胞替代退化神经细胞的能力有限的问题。重要的是,生物材料不仅能增强内源性CNS神经发生和可塑性,还能提供理想的支持性微环境,以充分发挥体外扩增的神经干细胞(NSCs)用于再生目的的全部潜力。在此,首先,我们讨论生物材料的物理和生化特性,如硬度和弹性,如何影响NSCs的行为。然后,由于NSCs生态位或微环境在控制NSCs的动态命运(如静止和增殖状态)方面至关重要,将详细讨论生物材料表面多样性的拓扑效应,即微图案和纳米图案表面。最后,将综述生物材料作为人工微环境通过由粘着斑形成介导的特定机械转导信号通路对NSCs行为的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验