Suppr超能文献

使用 R 包 visae 进行对应分析可视化临床试验中的不良事件。

Visualizing adverse events in clinical trials using correspondence analysis with R-package visae.

机构信息

Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.

出版信息

BMC Med Res Methodol. 2021 Nov 9;21(1):244. doi: 10.1186/s12874-021-01368-w.

Abstract

BACKGROUND

Graphical displays and data visualization are essential components of statistical analysis that can lead to improved understanding of clinical trial adverse event (AE) data. Correspondence analysis (CA) has been introduced decades ago as a multivariate technique that can communicate AE contingency tables using two-dimensional plots, while quantifying the loss of information as other dimension reduction techniques such as principal components and factor analysis.

METHODS

We propose the application of stacked CA using contribution biplots as a tool to explore differences in AE data among treatments in clinical trials. We defined five levels of refinement for the analysis based on data derived from the Common Terminology Criteria for Adverse Events (CTCAE) grades, domains, terms and their combinations. In addition, we developed a Shiny app built in an R-package, visae, publicly available on Comprehensive R Archive Network (CRAN), to interactively investigate CA configurations based on the contribution to the explained variance and relative frequency of AEs. Data from two randomized controlled trials (RCT) were used to illustrate the proposed methods: NSABP R-04, a neoadjuvant rectal 2 × 2 factorial trial comparing radiation therapy with either capecitabine (Cape) or 5-fluorouracil (5-FU) alone with or without oxaliplatin (Oxa), and NSABP B-35, a double-blind RCT comparing tamoxifen to anastrozole in postmenopausal women with hormone-positive ductal carcinoma in situ.

RESULTS

In the R04 trial (n = 1308), CA biplots displayed the discrepancies between single agent treatments and their combinations with Oxa at all levels of AE classes, such that these discrepancies were responsible for the largest portion of the explained variability among treatments. In addition, an interaction effect when adding Oxa to Cape/5-FU was identified when the distance between Cape+Oxa and 5-FU + Oxa was observed to be larger than the distance between 5-FU and Cape, with Cape+Oxa and 5-FU + Oxa in different quadrants of the CA biplots. In the B35 trial (n = 3009), CA biplots showed different patterns for non-adherent Anastrozole and Tamoxifen compared with their adherent counterparts.

CONCLUSION

CA with contribution biplot is an effective tool that can be used to summarize AE data in a two-dimensional display while minimizing the loss of information and interpretation.

摘要

背景

图形显示和数据可视化是统计分析的重要组成部分,可以帮助更好地理解临床试验不良事件 (AE) 数据。对应分析 (CA) 是几十年前引入的一种多变量技术,它可以使用二维图来表示 AE 列联表,同时量化其他降维技术(如主成分分析和因子分析)造成的信息损失。

方法

我们提出使用堆叠 CA 和贡献双标图作为工具,探索临床试验中不同治疗方法之间的 AE 数据差异。我们根据来自不良事件通用术语标准 (CTCAE) 等级、域、术语及其组合的数据,定义了分析的五个细化级别。此外,我们还开发了一个基于 R 包 visae 的 shiny 应用程序,该应用程序可在 Comprehensive R Archive Network (CRAN) 上公开获取,可根据对解释方差和 AE 相对频率的贡献来交互地研究 CA 配置。我们使用来自两个随机对照试验 (RCT) 的数据来说明所提出的方法:NSABP R-04,这是一项新辅助直肠 2×2 析因试验,比较了单独使用放疗与卡培他滨 (Cape) 或 5-氟尿嘧啶 (5-FU) 以及奥沙利铂 (Oxa) 的疗效;NSABP B-35,这是一项比较绝经后激素阳性导管原位癌患者使用他莫昔芬和阿那曲唑的双盲 RCT。

结果

在 R04 试验 (n=1308) 中,CA 双标图显示了单药治疗与奥沙利铂联合治疗之间的差异,在 AE 所有等级水平上均如此,这些差异是导致治疗之间最大变异部分的原因。此外,当观察到 Cape+Oxa 和 5-FU+Oxa 之间的距离大于 5-FU 和 Cape 之间的距离时,发现了添加奥沙利铂到 Cape/5-FU 时的交互效应,并且 Cape+Oxa 和 5-FU+Oxa 位于 CA 双标图的不同象限。在 B35 试验 (n=3009) 中,CA 双标图显示了非依从性阿那曲唑和他莫昔芬与依从性对应物相比的不同模式。

结论

带有贡献双标图的 CA 是一种有效的工具,可以在二维显示中总结 AE 数据,同时最大限度地减少信息损失和解释的难度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e53f/8579548/922e22f60dfa/12874_2021_1368_Fig1_HTML.jpg

相似文献

1
Visualizing adverse events in clinical trials using correspondence analysis with R-package visae.
BMC Med Res Methodol. 2021 Nov 9;21(1):244. doi: 10.1186/s12874-021-01368-w.
3
4
Evaluating Treatment Tolerability in Cancer Clinical Trials Using the Toxicity Index.
J Natl Cancer Inst. 2020 Dec 14;112(12):1266-1274. doi: 10.1093/jnci/djaa028.
5
7
Fluoropyrimidine Cardiotoxicity: Time for a Contemporaneous Appraisal.
Clin Colorectal Cancer. 2019 Mar;18(1):44-51. doi: 10.1016/j.clcc.2018.08.001. Epub 2018 Aug 20.
9
Are all aromatase inhibitors the same? A review of controlled clinical trials in breast cancer.
Clin Ther. 2005 Nov;27(11):1671-84. doi: 10.1016/j.clinthera.2005.11.013.

本文引用的文献

1
Adverse Event Burden Score-A Versatile Summary Measure for Cancer Clinical Trials.
Cancers (Basel). 2020 Nov 4;12(11):3251. doi: 10.3390/cancers12113251.
2
Time course analysis of large-scale gene expression in incised muscle using correspondence analysis.
PLoS One. 2020 Mar 25;15(3):e0230737. doi: 10.1371/journal.pone.0230737. eCollection 2020.
3
Evaluating Treatment Tolerability in Cancer Clinical Trials Using the Toxicity Index.
J Natl Cancer Inst. 2020 Dec 14;112(12):1266-1274. doi: 10.1093/jnci/djaa028.
4
Analysis and reporting of adverse events in randomised controlled trials: a review.
BMJ Open. 2019 Mar 1;9(2):e024537. doi: 10.1136/bmjopen-2018-024537.
6
Correspondence analysis to evaluate the transmission of Staphylococcus aureus strains in two New York State maximum-security prisons.
Epidemiol Infect. 2017 Jul;145(10):2161-2165. doi: 10.1017/S0950268817000942. Epub 2017 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验