Department of Chemistry and Life Science, Chemical Engineering Program, United States Military Academy, West Point, NY, 10996, USA.
Sci Rep. 2021 Nov 9;11(1):22004. doi: 10.1038/s41598-021-01362-8.
Characterizing human blood, a complex material with a spectrum of thixo-elasto-visco-plastic properties, through the development of more effective and efficient models has achieved special interest of late. This effort details the development a new approach, the tensorial-enhanced-Thixo-Visco-Plastic model (t-e-TVP), which integrates elements from the proven Bingham and generalized Maxwell systems to create a more robust framework and subsequently cast into a tensorial format. Here, the elastic and viscoelastic stress contributions from the microstructure are superimposed upon the viscoelastic backbone solution for stress offered by the modified TVP frame. The utility of this novel model is tested against the contemporary tensorial-ethixo-mHAWB (t-ethixo-mHAWB) framework, a similar model with a greater number of parameters, using rheological data of human blood collected on an ARESG2 strain-controlled rheometer. The blood samples are parametrically and statistically analyzed, entailing the comparison of the t-e-TVP and t-ethixo-mHAWB models with their capacity to accurately predict small and large amplitude oscillatory shear as well as unidirectional large amplitude oscillatory shear flow in blood.
近年来,通过开发更有效和高效的模型来描述具有粘弹塑性复杂属性的人类血液,已引起了特别关注。这项工作详细介绍了一种新方法的开发,即张量增强触变粘塑性模型(t-e-TVP),它整合了经过验证的宾汉和广义麦克斯韦系统的元素,以创建更强大的框架,并随后转换为张量格式。在这里,来自微观结构的弹性和粘弹性应力贡献叠加在修改后的 TVP 框架提供的粘弹性骨架解上的粘弹性应力贡献上。使用在 ARESG2 应变速率控制流变仪上收集的人类血液流变学数据,针对具有更多参数的类似模型,即当代张量触变 mHAWB(t-ethixo-mHAWB)框架,对这种新型模型的实用性进行了测试。对血液样本进行了参数和统计分析,比较了 t-e-TVP 和 t-ethixo-mHAWB 模型在准确预测小振幅和大振幅振荡剪切以及血液单向大振幅振荡剪切流方面的能力。