Quemada D
Biorheology. 1984;21(4):423-36. doi: 10.3233/bir-1984-21403.
Biofluids as concentrated suspensions exibit (at fixed shear rate gamma) a steady shear viscosity eta which critically depends on (i) the volume fraction of particles phi, and (ii) the ability the particles have to form more or less loose structural units (flocs, aggregates or parts of network). The latter can be quantified by some effective packing volume fraction phi p which reflects the actual compacity of structural units. A special eta-phi relationships which involves such a packing fraction will be discussed. Changes of structural units as shear rate gamma (or shear stress sigma) varies lead to phi p = phi p (gamma) i.e. to non-newtonian viscosity. This shear-thinning behaviour is believed to result from some dynamical equilibrium between formation and destruction of structural units, in the presence of both brownian motions of particles and the shear stresses the suspending fluid exerts on them. A (simple) rate equation (from reaction kinetics) gives a quantitative description of phi p-dependences in gamma and time t. Under steady conditions, the present approach is capable not only to model shear-thinning behaviour but also plastic and shear thickening (dilatant) ones. Time variations under transient shear rate (i.e. thixotropy) can be described with phi p(t) deduced from the same rate equation. Extension to visco-elastic behaviour has been obtained using a Maxwell-model with instantaneous values of viscosity and elasticity which both are functionals of the structural variable phi p(t, gamma).
作为浓缩悬浮液的生物流体(在固定剪切速率γ下)表现出稳定的剪切粘度η,它主要取决于:(i)颗粒的体积分数φ;(ii)颗粒形成或多或少松散结构单元(絮体、聚集体或网络部分)的能力。后者可以通过一些有效堆积体积分数φp来量化,它反映了结构单元的实际紧密程度。将讨论一种涉及这种堆积分数的特殊的η-φ关系。随着剪切速率γ(或剪切应力σ)的变化,结构单元的变化导致φp = φp(γ),即非牛顿粘度。这种剪切变稀行为被认为是由于在颗粒的布朗运动和悬浮流体施加在它们上面的剪切应力的共同作用下,结构单元的形成和破坏之间的某种动态平衡所导致的。一个(简单的)速率方程(来自反应动力学)给出了φp在γ和时间t方面的定量描述。在稳定条件下,目前的方法不仅能够模拟剪切变稀行为,还能够模拟塑性和剪切增稠(膨胀)行为。瞬态剪切速率下的时间变化(即触变性)可以用从同一个速率方程推导出来的φp(t)来描述。使用具有粘度和弹性瞬时值的麦克斯韦模型,已经实现了向粘弹性行为的扩展,而粘度和弹性的瞬时值都是结构变量φp(t, γ)的泛函。