Suppr超能文献

用于预测低级别胶质瘤预后不良的无癫痫发作相关基因特征的鉴定与验证

Identification and Validation of a Seizure-Free-Related Gene Signature for Predicting Poor Prognosis in Lower-Grade Gliomas.

作者信息

Li Jinxing, Huan Jing, Yang Fu, Chen Haixin, Wang Mingguang, Heng Xueyuan

机构信息

Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China.

Department of Neurosurgery, Linyi People's Hospital, Linyi, 276000, Shandong, People's Republic of China.

出版信息

Int J Gen Med. 2021 Oct 29;14:7399-7410. doi: 10.2147/IJGM.S329745. eCollection 2021.

Abstract

BACKGROUND

Lower-grade gliomas (LGGs) patients presented seizure-free have a worse survival than those presented with seizures. However, the current knowledge on its potential value in LGGs remains scarce.

PURPOSE

This study aimed to identify a novel gene signature associated with seizures-free for predicting poor prognosis for LGGs patients.

MATERIALS AND METHODS

The RNA expression and clinical information of LGGs patients were downloaded from the Cancer Genome Atlas database. Differentially expressed genes (DEGs) were screened out between LGGs patients presented seizures-free and seizures. The novel gene signature was constructed by Lasso and multivariate regression analyses for predicting prognosis in LGGs. Its prognostic value was assessed and validated by Kaplan-Meier analyses and receiver operating characteristic (ROC) curves. Multivariate regression analysis was applied to identify the independent prognostic value of the gene signature. Furthermore, bioinformatics analysis was performed to elucidate the molecular mechanisms.

RESULTS

A total of 253 DEGs were screened out between LGG patients presented with seizures and free of seizures. A 5-gene signature (HIST1H4F, HORMAD2, LILRA3, PRSS33, and TBX20 genes) was constructed from these 253 DEGs. Kaplan-Meier analyses and ROC curves assessed and validated the good performance of the 5-gene signature in differentiating and predicting prognosis of high- and low-risk patients. Multivariate regression analysis determined the independent prognostic value of the 5-gene signature. According to bioinformatics analysis, DEGs were mainly enriched in biological processes related to positive regulation of transcription from RNA polymerase II promoter, G-protein coupled receptor signaling pathway, and pathways of cytokine-cytokine receptor interaction, chemokine signaling pathway.

CONCLUSION

Our findings suggested that the 5-gene signature might serve as a potential prognostic biomarker and provide guidance for the personalized LGGs management.

摘要

背景

无癫痫发作的低级别胶质瘤(LGG)患者的生存期比有癫痫发作的患者更差。然而,目前关于其在LGG中的潜在价值的知识仍然匮乏。

目的

本研究旨在识别一种与无癫痫发作相关的新型基因特征,以预测LGG患者的不良预后。

材料与方法

从癌症基因组图谱数据库下载LGG患者的RNA表达和临床信息。在无癫痫发作和有癫痫发作的LGG患者之间筛选出差异表达基因(DEG)。通过套索回归和多变量回归分析构建用于预测LGG预后的新型基因特征。通过Kaplan-Meier分析和受试者工作特征(ROC)曲线评估并验证其预后价值。应用多变量回归分析确定基因特征的独立预后价值。此外,进行生物信息学分析以阐明分子机制。

结果

在有癫痫发作和无癫痫发作的LGG患者之间共筛选出253个DEG。从这253个DEG中构建了一个由5个基因组成的特征(HIST1H4F、HORMAD2、LILRA3、PRSS33和TBX20基因)。Kaplan-Meier分析和ROC曲线评估并验证了该5基因特征在区分和预测高风险和低风险患者预后方面的良好性能。多变量回归分析确定了该5基因特征的独立预后价值。根据生物信息学分析,DEG主要富集在与RNA聚合酶II启动子转录的正调控、G蛋白偶联受体信号通路以及细胞因子-细胞因子受体相互作用、趋化因子信号通路相关的生物学过程中。

结论

我们的研究结果表明,该5基因特征可能作为一种潜在的预后生物标志物,并为LGG的个性化管理提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b387/8570923/e562e2b665c1/IJGM-14-7399-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验