Department of Statistics, Stanford University, Stanford, CA, USA.
Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
Cell Rep Med. 2021 Oct 19;2(10):100425. doi: 10.1016/j.xcrm.2021.100425.
Predicting disease progression remains a particularly challenging endeavor in chronic degenerative disorders and cancer, thus limiting early detection, risk stratification, and preventive interventions. Here, profiling the three chronic subtypes of myeloproliferative neoplasms (MPNs), we identify the blood platelet transcriptome as a proxy strategy for highly sensitive progression biomarkers that also enables prediction of advanced disease via machine-learning algorithms. The MPN platelet transcriptome reveals an incremental molecular reprogramming that is independent of patient driver mutation status or therapy. Subtype-specific markers offer mechanistic and therapeutic insights, and highlight impaired proteostasis and a persistent integrated stress response. Using a LASSO model with validation in two independent cohorts, we identify the advanced subtype MF at high accuracy and offer a robust progression signature toward clinical translation. Our platelet transcriptome snapshot of chronic MPNs demonstrates a proof-of-principle for disease risk stratification and progression beyond genetic data alone, with potential utility in other progressive disorders.
预测疾病进展仍然是慢性退行性疾病和癌症领域的一项极具挑战性的工作,这限制了早期检测、风险分层和预防性干预的实施。在这里,我们对三种慢性骨髓增殖性肿瘤(MPN)亚型进行了分析,发现血小板转录组可作为高度敏感的疾病进展生物标志物的替代策略,还可通过机器学习算法预测晚期疾病。MPN 血小板转录组揭示了一种与患者驱动突变状态或治疗无关的渐进式分子重编程。亚型特异性标志物提供了机制和治疗方面的见解,并突出了蛋白质稳态受损和持续的综合应激反应。我们使用 LASSO 模型,并在两个独立队列中进行了验证,以高精度识别出高级亚型 MF,并提供了向临床转化的稳健进展特征。我们对慢性 MPN 的血小板转录组进行了快照分析,证明了仅基于遗传数据进行疾病风险分层和进展的原理,在其他进展性疾病中具有潜在的应用价值。