Suppr超能文献

电子鼻技术在结节病中的诊断性能。

Diagnostic Performance of Electronic Nose Technology in Sarcoidosis.

机构信息

Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.

Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands.

出版信息

Chest. 2022 Mar;161(3):738-747. doi: 10.1016/j.chest.2021.10.025. Epub 2021 Oct 28.

Abstract

BACKGROUND

Diagnosing sarcoidosis can be challenging, and a noninvasive diagnostic method is lacking. The electronic nose (eNose) technology profiles volatile organic compounds in exhaled breath and has potential as a point-of-care diagnostic tool.

RESEARCH QUESTION

Can eNose technology be used to distinguish accurately between sarcoidosis, interstitial lung disease (ILD), and healthy control subjects, and between sarcoidosis subgroups?

STUDY DESIGN AND METHODS

In this cross-sectional study, exhaled breath of patients with sarcoidosis and ILD and healthy control subjects was analyzed by using an eNose (SpiroNose). Clinical characteristics were collected from medical files. Partial least squares discriminant and receiver-operating characteristic analyses were applied to a training and independent validation cohort.

RESULTS

The study included 252 patients with sarcoidosis, 317 with ILD, and 48 healthy control subjects. In the validation cohorts, eNose distinguished sarcoidosis from control subjects with an area under the curve (AUC) of 1.00 and pulmonary sarcoidosis from other ILD (AUC, 0.87; 95% CI, 0.82-0.93) and hypersensitivity pneumonitis (AUC, 0.88; 95% CI, 0.75-1.00). Exhaled breath of sarcoidosis patients with and without pulmonary involvement, pulmonary fibrosis, multiple organ involvement, pathology-supported diagnosis, and immunosuppressive treatment revealed no distinctive differences. Breath profiles differed between patients with a slightly and highly elevated soluble IL-2 receptor level (median cutoff, 772.0 U/mL; AUC, 0.78; 95% CI, 0.64-0.92).

INTERPRETATION

Patients with sarcoidosis can be distinguished from ILD and healthy control subjects by using eNose technology, indicating that this method may facilitate accurate diagnosis in the future. Further research is warranted to understand the value of eNose in monitoring sarcoidosis activity.

摘要

背景

诊断结节病具有挑战性,并且缺乏非侵入性的诊断方法。电子鼻(eNose)技术可分析呼气中的挥发性有机化合物,有望成为一种即时诊断工具。

研究问题

eNose 技术是否可准确区分结节病、间质性肺疾病(ILD)和健康对照者,以及结节病亚组?

研究设计和方法

在这项横断面研究中,使用电子鼻(SpiroNose)分析了结节病和ILD 患者以及健康对照者的呼气。从病历中收集临床特征。应用偏最小二乘判别和接收者操作特征分析对训练和独立验证队列进行分析。

结果

该研究纳入了 252 例结节病患者、317 例 ILD 患者和 48 例健康对照者。在验证队列中,eNose 以 1.00 的曲线下面积(AUC)区分了结节病与对照组,以 0.87 的 AUC 区分了肺结节病与其他 ILD(95%CI,0.82-0.93)和过敏性肺炎(AUC,0.88;95%CI,0.75-1.00)。有和无肺部受累、肺纤维化、多器官受累、经病理证实诊断和免疫抑制治疗的结节病患者的呼气特征无明显差异。可溶性白细胞介素 2 受体水平轻度和高度升高患者的呼吸谱不同(中位数截距,772.0 U/mL;AUC,0.78;95%CI,0.64-0.92)。

结论

eNose 技术可区分结节病患者与 ILD 和健康对照者,表明该方法可能有助于未来的准确诊断。需要进一步研究以了解 eNose 在监测结节病活动中的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8d4/8941620/1b1770201f96/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验