Suppr超能文献

水相双聚合物支架中微生物图案生长动力学的特性研究。

Characterization of Patterned Microbial Growth Dynamics in Aqueous Two-Phase Polymer Scaffolds.

机构信息

School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada.

Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada.

出版信息

ACS Biomater Sci Eng. 2021 Dec 13;7(12):5506-5514. doi: 10.1021/acsbiomaterials.1c01130. Epub 2021 Nov 10.

Abstract

Microbial growth confinement using liquid scaffolds based on an aqueous two-phase system (ATPS) is a promising technique to overcome the challenges in microbial-mammalian co-culture . To better understand the potential use of the ATPS in studying these complex interactions, the goal of this research was to characterize the effects of bacteria loading and biofilm maturation on the stability of a polyethylene glycol (PEG) and dextran (DEX) ATPS. Two ATPS formulations, consisting of 5% PEG/5% DEX and 10% PEG/10% DEX (w/v), were prepared. To test the containment limits of each ATPS formulation, MG1655 overnight cultures were resuspended in DEX at optical densities (ODs) of 1, 0.3, 0.1, 0.03, and 0.01. Established colonies initially seeded at lower densities were contained within the DEX phase to a greater extent than colonies initially seeded at higher densities. Furthermore, the 10% PEG/10% DEX formulation demonstrated longer containment time of compared to the 5% PEG/5% DEX formulation. growth dynamics within the ATPS were found to be affected by the initial bacterial density, where colonies of lower initial seeding densities demonstrate more dynamic growth trends compared to colonies of higher initial seeding densities. However, the addition of DEX to the existing ATPS during the growth phase of the bacterial colony does not appear to disrupt the growth inertia of . We also observed that microbial growth can disrupt ATPS stability below the physical carrying capacity of the DEX droplets. In both and UA159 colonies, the ATPS interfacial tensions are reduced, as suggested by the loss of fluorescein isothiocyanate (FITC)-DEX confinement and contact angel measurements, while the microbial colony remained well defined. In general, we observed that the stability of the ATPS microbial colony is proportional to polymer concentrations and inversely proportional to seeding density and culture time. These parameters can be combined as part of a toolset to control microbial growth in a heterotypic co-culture platform and should be considered in future work involving mammalian-microbial cell interactions.

摘要

基于双水相体系(ATPS)的液体支架限制微生物生长是克服微生物-哺乳动物共培养挑战的一种很有前途的技术。为了更好地了解 ATPS 在研究这些复杂相互作用中的潜在用途,本研究的目的是表征细菌负载和生物膜成熟对聚乙二醇(PEG)和葡聚糖(DEX)ATPS 稳定性的影响。制备了两种 ATPS 配方,由 5%PEG/5%DEX 和 10%PEG/10%DEX(w/v)组成。为了测试每种 ATPS 配方的容纳极限,将 MG1655 过夜培养物在 DEX 中的 OD 值为 1、0.3、0.1、0.03 和 0.01 时重新悬浮。与初始接种密度较高的 菌落相比,初始接种密度较低的 菌落更多地被包含在 DEX 相中。此外,10%PEG/10%DEX 配方显示出比 5%PEG/5%DEX 配方更长的 容纳时间。发现 ATPS 内的 生长动态受初始细菌密度的影响,其中较低初始接种密度的菌落比较高初始接种密度的菌落表现出更动态的生长趋势。然而,在细菌菌落的生长阶段向现有的 ATPS 中添加 DEX 似乎不会破坏 的生长惯性。我们还观察到,微生物生长可以在 DEX 液滴的物理承载能力以下破坏 ATPS 的稳定性。在 和 UA159 菌落中,如 FITC-Dex 限制和接触角测量表明的,ATPS 界面张力降低,而微生物菌落仍然清晰可见。一般来说,我们观察到 ATPS 微生物菌落的稳定性与聚合物浓度成正比,与接种密度和培养时间成反比。这些参数可以组合成一个工具包的一部分,以控制异质共培养平台中的微生物生长,并且应该在涉及哺乳动物-微生物细胞相互作用的未来工作中考虑。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验