Messelberger Julian, Grünwald Annette, Goodner Stephen J, Zeilinger Florian, Pinter Piermaria, Miehlich Matthias E, Heinemann Frank W, Hansmann Max M, Munz Dominik
Lehrstuhl für Allgemeine und Anorganische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstr. 1 91058 Erlangen Germany
Institut für Organische und Biomolekulare Chemie, Georg-August Universität Göttingen Tammannstraße 2 37077 Göttingen Germany.
Chem Sci. 2020 Mar 30;11(16):4138-4149. doi: 10.1039/d0sc00699h. eCollection 2020 Apr 28.
We elucidate why some electron rich-olefins such as tetrathiafulvalene (TTF) or paraquat (1,1'-dimethyl-4,4'-bipyridinylidene) form persistent radical cations, whereas others such as the dimer of ,'-dimethyl benzimidazolin-2-ylidene (benzNHC) do not. Specifically, three heterodimers derived from cyclic (alkyl) (amino) carbenes (CAAC) with ,'-dimethyl imidazolin-2-ylidene (NHC), ,'-dimethyl imidazolidin-2-ylidene (saNHC) and -methyl benzothiazolin-2-ylidene (btNHC) are reported. Whereas the olefin radical cations with the NHC and btNHC are isolable, the NHC compound with a saturated backbone (saNHC) disproportionates instead to the biscation and olefin. Furthermore, the electrochemical properties of the electron-rich olefins derived from the dimerization of the saNHC and btNHC were assessed. Based on the experiments, we propose a general computational method to model the electrochemical potentials and disproportionation equilibrium. This method, which achieves an accuracy of 0.07 V (0.06 V with calibration) in reference to the experimental values, allows for the first time to rationalize and predict the (in)stability of olefin radical cations towards disproportionation. The combined results reveal that the stability of heterodimeric olefin radical cations towards disproportionation is mostly due to aromaticity. In contrast, homodimeric radical cations are in principle isolable, if lacking steric bulk in the 2,2' positions of the heterocyclic monomers. Rigid tethers increase accordingly the stability of homodimeric radical cations, whereas the electronic effects of substituents seem much less important for the disproportionation equilibrium.
我们阐明了为何某些富电子烯烃,如四硫富瓦烯(TTF)或百草枯(1,1'-二甲基-4,4'-联吡啶鎓)会形成持久的自由基阳离子,而其他一些物质,如1,1'-二甲基苯并咪唑-2-亚基(benzNHC)的二聚体则不会。具体而言,本文报道了三种由环状(烷基)(氨基)卡宾(CAAC)与1,1'-二甲基咪唑-2-亚基(NHC)、1,1'-二甲基咪唑烷-2-亚基(saNHC)和1-甲基苯并噻唑-2-亚基(btNHC)衍生而来的异二聚体。虽然与NHC和btNHC形成的烯烃自由基阳离子是可分离的,但具有饱和主链的NHC化合物(saNHC)反而歧化为双阳离子和烯烃。此外,还评估了由saNHC和btNHC二聚化衍生而来的富电子烯烃的电化学性质。基于这些实验,我们提出了一种通用的计算方法来模拟电化学势和歧化平衡。该方法相对于实验值的准确度达到了0.07 V(校准后为0.06 V),首次能够合理化并预测烯烃自由基阳离子对歧化反应的(不)稳定性。综合结果表明,异二聚体烯烃自由基阳离子对歧化反应的稳定性主要归因于芳香性。相比之下,同二聚体自由基阳离子原则上是可分离的,前提是杂环单体的2,2'位没有空间位阻。刚性连接基团相应地增加了同二聚体自由基阳离子的稳定性,而取代基的电子效应对于歧化平衡似乎不太重要。