O'Nolan Daniel, Zhao Haiyan, Chen Zhihengyu, Grenier Antonin, Beauvais Michelle L, Newton Mark A, Nenoff Tina M, Chupas Peter J, Chapman Karena W
Department of Chemistry, Stony Brook University 100 Nicolls Rd, Stony Brook New York 11790 USA
X-ray Science Division, Advanced Photon Source, Argonne National Laboratory Lemont Illinois 60439 USA.
Chem Sci. 2021 Sep 13;12(41):13836-13847. doi: 10.1039/d1sc04232g. eCollection 2021 Oct 27.
Unraveling the complex, competing pathways that can govern reactions in multicomponent systems is an experimental and technical challenge. We outline and apply a novel analytical toolkit that fully leverages the synchronicity of multimodal experiments to deconvolute causal from correlative relationships and resolve structural and chemical changes in complex materials. Here, simultaneous multimodal measurements combined diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and angular dispersive X-ray scattering suitable for pair distribution function (PDF), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) analyses. The multimodal experimental data was interpreted multi-level analysis; conventional analyses of each data series were integrated through meta-analysis involving non-negative matrix factorization (NMF) as a dimensional reduction algorithm and correlation analysis. We apply this toolkit to build a cohesive mechanistic picture of the pathways governing silver nanoparticle formation in zeolite A (LTA), which is key to designing catalytic and separations-based applications. For this Ag-LTA system, the mechanisms of zeolite dehydration, framework flexing, ion reduction, and cluster and nanoparticle formation and transport through the zeolite are elucidated. We note that the advanced analytical approach outline here can be applied generally to multimodal experiments, to take full advantage of the efficiencies and self-consistencies in understanding complex materials and go beyond what can be achieved by conventional approaches to data analysis.
解析多组分系统中控制反应的复杂且相互竞争的路径是一项实验和技术挑战。我们概述并应用了一种新颖的分析工具包,该工具包充分利用多模态实验的同步性,以区分因果关系与相关关系,并解析复杂材料中的结构和化学变化。在这里,同步多模态测量结合了漫反射红外傅里叶变换光谱(DRIFTS)和适用于对分布函数(PDF)、X射线衍射(XRD)和小角X射线散射(SAXS)分析的角散射X射线散射。多模态实验数据通过多层次分析进行解释;每个数据系列的常规分析通过涉及非负矩阵分解(NMF)作为降维算法和相关分析的元分析进行整合。我们应用此工具包构建了一个连贯的机理图,以描述在A型沸石(LTA)中控制银纳米颗粒形成的路径,这是设计基于催化和分离的应用的关键。对于这个Ag-LTA系统,阐明了沸石脱水、骨架弯曲、离子还原以及团簇和纳米颗粒在沸石中的形成与传输机制。我们注意到,这里概述的先进分析方法通常可应用于多模态实验,以充分利用理解复杂材料时的效率和自洽性,并超越传统数据分析方法所能达到的水平。