Suppr超能文献

电自催化驱动的锂层状氧化物中的虚拟相分离

Fictitious phase separation in Li layered oxides driven by electro-autocatalysis.

作者信息

Park Jungjin, Zhao Hongbo, Kang Stephen Dongmin, Lim Kipil, Chen Chia-Chin, Yu Young-Sang, Braatz Richard D, Shapiro David A, Hong Jihyun, Toney Michael F, Bazant Martin Z, Chueh William C

机构信息

Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.

Stanford Institute for Materials & Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.

出版信息

Nat Mater. 2021 Jul;20(7):991-999. doi: 10.1038/s41563-021-00936-1. Epub 2021 Mar 8.

Abstract

Layered oxides widely used as lithium-ion battery electrodes are designed to be cycled under conditions that avoid phase transitions. Although the desired single-phase composition ranges are well established near equilibrium, operando diffraction studies on many-particle porous electrodes have suggested phase separation during delithiation. Notably, the separation is not always observed, and never during lithiation. These anomalies have been attributed to irreversible processes during the first delithiation or reversible concentration-dependent diffusion. However, these explanations are not consistent with all experimental observations such as rate and path dependencies and particle-by-particle lithium concentration changes. Here, we show that the apparent phase separation is a dynamical artefact occurring in a many-particle system driven by autocatalytic electrochemical reactions, that is, an interfacial exchange current that increases with the extent of delithiation. We experimentally validate this population-dynamics model using the single-phase material Li(NiMnCo)O (0.5 < x < 1) and demonstrate generality with other transition-metal compositions. Operando diffraction and nanoscale oxidation-state mapping unambiguously prove that this fictitious phase separation is a repeatable non-equilibrium effect. We quantitatively confirm the theory with multiple-datastream-driven model extraction. More generally, our study experimentally demonstrates the control of ensemble stability by electro-autocatalysis, highlighting the importance of population dynamics in battery electrodes (even non-phase-separating ones).

摘要

广泛用作锂离子电池电极的层状氧化物被设计为在避免相变的条件下进行循环。尽管在接近平衡的状态下,所需的单相组成范围已得到充分确定,但对多颗粒多孔电极的原位衍射研究表明,在脱锂过程中会发生相分离。值得注意的是,这种分离并非总是能观察到,而且在锂化过程中从未出现过。这些异常现象被归因于首次脱锂过程中的不可逆过程或可逆的浓度依赖性扩散。然而,这些解释并不与所有实验观察结果一致,例如速率和路径依赖性以及逐个颗粒的锂浓度变化。在这里,我们表明,表观相分离是由自催化电化学反应驱动的多颗粒系统中出现的一种动力学假象,也就是说,是一种随着脱锂程度增加的界面交换电流。我们使用单相材料Li(NiMnCo)O₂(0.5 < x < 1)通过实验验证了这个群体动力学模型,并证明了其他过渡金属组成也具有普遍性。原位衍射和纳米级氧化态映射明确证明,这种虚拟相分离是一种可重复的非平衡效应。我们通过多数据流驱动的模型提取定量地证实了该理论。更一般地说,我们的研究通过实验证明了通过电自催化对整体稳定性的控制,突出了群体动力学在电池电极(甚至是非相分离电极)中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验